77 research outputs found

    Vehicle Coordinated Strategy for Vehicle Routing Problem with Fuzzy Demands

    Get PDF
    The vehicle routing problem with fuzzy demands (VRPFD) is considered. A fuzzy reasoning constrained program model is formulated for VRPFD, and a hybrid ant colony algorithm is proposed to minimize total travel distance. Specifically, the two-vehicle-paired loop coordinated strategy is presented to reduce the additional distance, unloading times, and waste capacity caused by the service failure due to the uncertain demands. Finally, numerical examples are presented to demonstrate the effectiveness of the proposed approaches

    Shared Mobility Optimization in Large Scale Transportation Networks: Methodology and Applications

    Get PDF
    abstract: Optimization of on-demand transportation systems and ride-sharing services involves solving a class of complex vehicle routing problems with pickup and delivery with time windows (VRPPDTW). Previous research has made a number of important contributions to the challenging pickup and delivery problem along different formulation or solution approaches. However, there are a number of modeling and algorithmic challenges for a large-scale deployment of a vehicle routing and scheduling algorithm, especially for regional networks with various road capacity and traffic delay constraints on freeway bottlenecks and signal timing on urban streets. The main thrust of this research is constructing hyper-networks to implicitly impose complicated constraints of a vehicle routing problem (VRP) into the model within the network construction. This research introduces a new methodology based on hyper-networks to solve the very important vehicle routing problem for the case of generic ride-sharing problem. Then, the idea of hyper-networks is applied for (1) solving the pickup and delivery problem with synchronized transfers, (2) computing resource hyper-prisms for sustainable transportation planning in the field of time-geography, and (3) providing an integrated framework that fully captures the interactions between supply and demand dimensions of travel to model the implications of advanced technologies and mobility services on traveler behavior.Dissertation/ThesisDoctoral Dissertation Civil, Environmental and Sustainable Engineering 201

    Resource allocation optimization problems in the public sector

    Get PDF
    This dissertation consists of three distinct, although conceptually related, public sector topics: the Transportation Security Agency (TSA), U.S. Customs and Border Patrol (CBP), and the Georgia Trauma Care Network Commission (GTCNC). The topics are unified in their mathematical modeling and mixed-integer programming solution strategies. In Chapter 2, we discuss strategies for solving large-scale integer programs to include column generation and the known heuristic of particle swarm optimization (PSO). In order to solve problems with an exponential number of decision variables, we employ Dantzig-Wolfe decomposition to take advantage of the special subproblem structures encountered in resource allocation problems. In each of the resource allocation problems presented, we concentrate on selecting an optimal portfolio of improvement measures. In most cases, the number of potential portfolios of investment is too large to be expressed explicitly or stored on a computer. We use column generation to effectively solve these problems to optimality, but are hindered by the solution time and large CPU requirement. We explore utilizing multi-swarm particle swarm optimization to solve the decomposition heuristically. We also explore integrating multi-swarm PSO into the column generation framework to solve the pricing problem for entering columns of negative reduced cost. In Chapter 3, we present a TSA problem to allocate security measures across all federally funded airports nationwide. This project establishes a quantitative construct for enterprise risk assessment and optimal resource allocation to achieve the best aviation security. We first analyze and model the various aviation transportation risks and establish their interdependencies. The mixed-integer program determines how best to invest any additional security measures for the best overall risk protection and return on investment. Our analysis involves cascading and inter-dependency modeling of the multi-tier risk taxonomy and overlaying security measurements. The model selects optimal security measure allocations for each airport with the objectives to minimize the probability of false clears, maximize the probability of threat detection, and maximize the risk posture (ability to mitigate risks) in aviation security. The risk assessment and optimal resource allocation construct are generalizable and are applied to the CBP problem. In Chapter 4, we optimize security measure investments to achieve the most cost-effective deterrence and detection capabilities for the CBP. A large-scale resource allocation integer program was successfully modeled that rapidly returns good Pareto optimal results. The model incorporates the utility of each measure, the probability of success, along with multiple objectives. To the best of our knowledge, our work presents the first mathematical model that optimizes security strategies for the CBP and is the first to introduce a utility factor to emphasize deterrence and detection impact. The model accommodates different resources, constraints, and various types of objectives. In Chapter 5, we analyze the emergency trauma network problem first by simulation. The simulation offers a framework of resource allocation for trauma systems and possible ways to evaluate the impact of the investments on the overall performance of the trauma system. The simulation works as an effective proof of concept to demonstrate that improvements to patient well-being can be measured and that alternative solutions can be analyzed. We then explore three different formulations to model the Emergency Trauma Network as a mixed-integer programming model. The first model is a Multi-Region, Multi-Depot, Multi-Trip Vehicle Routing Problem with Time Windows. This is a known expansion of the vehicle routing problem that has been extended to model the Georgia trauma network. We then adapt an Ambulance Routing Problem (ARP) to the previously mentioned VRP. There are no known ARPs of this magnitude/extension of a VRP. One of the primary differences is many ARPs are constructed for disaster scenarios versus day-to-day emergency trauma operations. The new ARP also implements more constraints based on trauma level limitations for patients and hospitals. Lastly, the Resource Allocation ARP is constructed to reflect the investment decisions presented in the simulation.Ph.D

    Simulating The Impact of Emissions Control on Economic Productivity Using Particle Systems and Puff Dispersion Model

    Get PDF
    A simulation platform is developed for quantifying the change in productivity of an economy under passive and active emission control mechanisms. The program uses object-oriented programming to code a collection of objects resembling typical stakeholders in an economy. These objects include firms, markets, transportation hubs, and boids which are distributed over a 2D surface. Firms are connected using a modified Prim’s Minimum spanning tree algorithm, followed by implementation of an all-pair shortest path Floyd Warshall algorithm for navigation purposes. Firms use a non-linear production function for transformation of land, labor, and capital inputs to finished product. A GA-Vehicle Routing Problem with multiple pickups and drop-offs is implemented for efficient delivery of commodities across multiple nodes in the economy. Boids are autonomous agents which perform several functions in the economy including labor, consumption, renting, saving, and investing. Each boid is programmed with several microeconomic functions including intertemporal choice models, Hicksian and Marshallian demand function, and labor-leisure model. The simulation uses a Puff Dispersion model to simulate the advection and diffusion of emissions from point and mobile sources in the economy. A dose-response function is implemented to quantify depreciation of a Boid’s health upon contact with these emissions. The impact of emissions control on productivity and air quality is examined through a series of passive and active emission control scenarios. Passive control examines the impact of various shutdown times on economic productivity and rate of emissions exposure experienced by boids. The active control strategy examines the effects of acceptable levels of emissions exposure on economic productivity. The key findings on 7 different scenarios of passive and active emissions controls indicate that rate of productivity and consumption in an economy declines with increased scrutiny of emissions from point sources. In terms of exposure rates, the point sources may not be the primary source of average exposure rates, however they significantly impact the maximum exposure rate experienced by a boid. Tightening of emissions control also negatively impacts the transportation sector by reducing the asset utilization rate as well as reducing the total volume of goods transported across the economy
    • …
    corecore