528 research outputs found

    A solution method for a two-layer sustainable supply chain distribution model

    Get PDF
    This article presents an effective solution method for a two-layer, NP-hard sustainable supply chain distribution model. A DoE-guided MOGA-II optimiser based solution method is proposed for locating a set of non-dominated solutions distributed along the Pareto frontier. The solution method allows decision-makers to prioritise the realistic solutions, while focusing on alternate transportation scenarios. The solution method has been implemented for the case of an Irish dairy processing industry׳s two-layer supply chain network. The DoE generates 6100 real feasible solutions after 100 generations of the MOGA-II optimiser which are then refined using statistical experimentation. As the decision-maker is presented with a choice of several distribution routes on the demand side of the two-layer network, TOPSIS is applied to rank the set of non-dominated solutions thus facilitating the selection of the best sustainable distribution route. The solution method characterises the Pareto solutions from disparate scenarios through numerical and statistical experimentations. A set of realistic routes from plants to consumers is derived and mapped which minimises total CO2 emissions and costs where it can be seen that the solution method outperforms existing solution methods

    An artificial bee colony algorithm for the capacitated vehicle routing problem

    Get PDF
    This paper introduces an artificial bee colony heuristic for solving the capacitated vehicle routing problem. The artificial bee colony heuristic is a swarm-based heuristic, which mimics the foraging behavior of a honey bee swarm. An enhanced version of the artificial bee colony heuristic is also proposed to improve the solution quality of the original version. The performance of the enhanced heuristic is evaluated on two sets of standard benchmark instances, and compared with the original artificial bee colony heuristic. The computational results show that the enhanced heuristic outperforms the original one, and can produce good solutions when compared with the existing heuristics. These results seem to indicate that the enhanced heuristic is an alternative to solve the capacitated vehicle routing problem. © 2011 Elsevier B.V. All rights reserved.postprin

    OPTIMAL ROUTE DETERMINATION FOR POSTAL DELIVERY USING ANT COLONY OPTIMIZATION ALGORITHM

    Get PDF
    There are a lot of optimization challenges in the world, as we all know. The vehicle routing problem is one of the more complex and high-level problems. Vehicle Routing Problem is a real-life problem in the Postal Delivery System logistics and, if not properly attended to, can lead to wastage of resources that could have been directed towards other things. Several studies have been carried out to tackle this problem using different techniques and algorithms. This study used the Ant Colony Optimization Algorithm along with some powerful APIs to find an optimal route for the delivery of posts to customers in a Postal Delivering System. When Ant Colony Optimization Algorithm is used to solve the vehicle routing problem in transportation systems, each Ant's journey is mere “part” of a feasible solution. To put it in another way, numerous ants' pathways might make up a viable solution. Routes are determined for a delivery vehicle, with the objective of minimizing customer waiting time and operation cost. Experimental results indicate that the solution is optimal and more accurat
    corecore