967 research outputs found

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    Cooperative coevolution of Elman recurrent neural networks for chaotic time series prediction

    Get PDF
    Cooperative coevolution decomposes a problem into subcomponents and employs evolutionary algorithms for solving them. Cooperative coevolution has been effective for evolving neural networks. Different problem decomposition methods in cooperative coevolution determine how a neural network is decomposed and encoded which affects its performance. A good problem decomposition method should provide enough diversity and also group interacting variables which are the synapses in the neural network. Neural networks have shown promising results in chaotic time series prediction. This work employs two problem decomposition methods for training Elman recurrent neural networks on chaotic time series problems. The Mackey-Glass, Lorenz and Sunspot time series are used to demonstrate the performance of the cooperative neuro-evolutionary methods. The results show improvement in performance in terms of accuracy when compared to some of the methods from literature

    A comprehensive survey on cultural algorithms

    Get PDF
    Peer reviewedPostprin

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    Multi - objective cooperative neuro - evolution of recurrent neural networks for time series prediction

    Get PDF
    Cooperative coevolution is an evolutionary computation method which solves a problem by decomposing it into smaller subcomponents. Multi-objective optimization deals with conflicting objectives and produces multiple optimal solutions instead of a single global optimal solution. In previous work, a multi-objective cooperative co-evolutionary method was introduced for training feedforward neural networks on time series problems. In this paper, the same method is used for training recurrent neural networks. The proposed approach is tested on time series problems in which the different time-lags represent the different objectives. Multiple pre-processed datasets distinguished by their time-lags are used for training and testing. This results in the discovery of a single neural network that can correctly give predictions for data pre-processed using different time-lags. The method is tested on several benchmark time series problems on which it gives a competitive performance in comparison to the methods in the literature

    Application of Particle Swarm Optimization to Formative E-Assessment in Project Management

    Get PDF
    The current paper describes the application of Particle Swarm Optimization algorithm to the formative e-assessment problem in project management. The proposed approach resolves the issue of personalization, by taking into account, when selecting the item tests in an e-assessment, the following elements: the ability level of the user, the targeted difficulty of the test and the learning objectives, represented by project management concepts which have to be checked. The e-assessment tool in which the Particle Swarm Optimization algorithm is integrated is also presented. Experimental results and comparison with other algorithms used in item tests selection prove the suitability of the proposed approach to the formative e-assessment domain. The study is presented in the framework of other evolutionary and genetic algorithms applied in e-education.Particle Swarm Optimization, Genetic Algorithms, Evolutionary Algorithms, Formative E-assessment, E-education

    Computational Intelligence for Solving Complex Optimization Problems

    Get PDF
    Complex optimization issues may now be solved using computational intelligence (CI), which has shown to be a powerful and diverse discipline. Traditional optimization approaches frequently struggle to offer efficient and effective solutions because real-world situations are becoming more complicated. Evolutionary algorithms, neural networks, fuzzy systems, and swarm intelligence are just a few examples of the many methods that fall under the umbrella of computational intelligence and are inspired by both natural and artificial intelligence. This abstract examines how computational intelligence techniques are used to solve complicated optimization issues, highlighting their benefits, drawbacks, and most recent developments. In this, computational intelligence techniques provide a potent and adaptable solution for resolving challenging optimization issues. They are highly adapted for dealing with the non-linear connections, uncertainties, and multi-objective situations that arise in real-world problems. The limits of computational intelligence have recently been pushed by recent developments in hybrid techniques and metaheuristics, even if obstacles in algorithm design and parameter tuning still exist. Computational intelligence is anticipated to play an increasingly significant role in tackling complicated optimization issues and fostering innovation across a variety of disciplines as technology continues to advance

    Adaptive and learning-based formation control of swarm robots

    Get PDF
    Autonomous aerial and wheeled mobile robots play a major role in tasks such as search and rescue, transportation, monitoring, and inspection. However, these operations are faced with a few open challenges including robust autonomy, and adaptive coordination based on the environment and operating conditions, particularly in swarm robots with limited communication and perception capabilities. Furthermore, the computational complexity increases exponentially with the number of robots in the swarm. This thesis examines two different aspects of the formation control problem. On the one hand, we investigate how formation could be performed by swarm robots with limited communication and perception (e.g., Crazyflie nano quadrotor). On the other hand, we explore human-swarm interaction (HSI) and different shared-control mechanisms between human and swarm robots (e.g., BristleBot) for artistic creation. In particular, we combine bio-inspired (i.e., flocking, foraging) techniques with learning-based control strategies (using artificial neural networks) for adaptive control of multi- robots. We first review how learning-based control and networked dynamical systems can be used to assign distributed and decentralized policies to individual robots such that the desired formation emerges from their collective behavior. We proceed by presenting a novel flocking control for UAV swarm using deep reinforcement learning. We formulate the flocking formation problem as a partially observable Markov decision process (POMDP), and consider a leader-follower configuration, where consensus among all UAVs is used to train a shared control policy, and each UAV performs actions based on the local information it collects. In addition, to avoid collision among UAVs and guarantee flocking and navigation, a reward function is added with the global flocking maintenance, mutual reward, and a collision penalty. We adapt deep deterministic policy gradient (DDPG) with centralized training and decentralized execution to obtain the flocking control policy using actor-critic networks and a global state space matrix. In the context of swarm robotics in arts, we investigate how the formation paradigm can serve as an interaction modality for artists to aesthetically utilize swarms. In particular, we explore particle swarm optimization (PSO) and random walk to control the communication between a team of robots with swarming behavior for musical creation
    • …
    corecore