13,617 research outputs found

    Multi-Hop Cluster based IEEE 802.11p and LTE Hybrid Architecture for VANET Safety Message Dissemination

    Full text link
    This paper proposes a hybrid architecture, namely VMaSC-LTE, combining IEEE 802.11p based multi-hop clustering and the fourth generation cellular system, Long Term Evolution (LTE), with the goal of achieving high data packet delivery ratio and low delay while keeping the usage of the cellular architecture at the minimum level. In VMaSC-LTE, vehicles are clustered based on a novel approach named VMaSC: Vehicular Multi-hop algorithm for Stable Clustering. From the clustered topology, elected cluster heads operate as dual-interface nodes with the functionality of IEEE 802.11p and LTE interface to link VANET to LTE network. Using various key metrics of interest including data packet delivery ratio, delay, control overhead and clustering stability, we demonstrate superior performance of the proposed architecture compared to both previously proposed hybrid architectures and alternative routing mechanisms including flooding and cluster based routing via extensive simulations in ns-3 with the vehicle mobility input from the Simulation of Urban Mobility (SUMO). The proposed architecture also allows achieving higher required reliability of the application quantified by the data packet delivery ratio at the cost of higher LTE usage determined by the number of cluster heads in the network.Comment: 16 pages, 13 figures, 7 tables, journal,transactions on vehicular technolog

    Over-the-air Signaling in Cellular Networks: An Overview

    Full text link
    To improve the capacity and coverage of current cellular networks, many advanced technologies such as massive MIMO, inter-cell coordination, small cells, device-to-device communications, and so on, are under studying. Many proposed techniques have been shown to offer significant performance improvement. Thus, the enabler of those techniques is of great importance. That is the necessary signaling which guarantee the operation of those techniques. The design and transmission of those signaling, especially the over-the-air (OTA) signaling, is challenging. In this article, we provide an overview of the OTA signaling in cellular networks to provide insights on the design of OTA signaling. Specifically, we first give a brief introduction of the OTA signaling in long term evolution (LTE), and then we discuss the challenges and requirements in designing the OTA signaling in cellular networks in detail. To better understand the OTA signaling, we give two important classifications of OTA signaling and address their properties and applications. Finally, we propose a signature-based signaling named (single-tone signaling, STS) which can be used for inter-cell OTA signaling and is especially useful and robust in multi-signal scenario. Simulation results are given to compare the detection performance of different OTA signaling.Comment: 8 page

    Effective Capacity in Wireless Networks: A Comprehensive Survey

    Full text link
    Low latency applications, such as multimedia communications, autonomous vehicles, and Tactile Internet are the emerging applications for next-generation wireless networks, such as 5th generation (5G) mobile networks. Existing physical-layer channel models, however, do not explicitly consider quality-of-service (QoS) aware related parameters under specific delay constraints. To investigate the performance of low-latency applications in future networks, a new mathematical framework is needed. Effective capacity (EC), which is a link-layer channel model with QoS-awareness, can be used to investigate the performance of wireless networks under certain statistical delay constraints. In this paper, we provide a comprehensive survey on existing works, that use the EC model in various wireless networks. We summarize the work related to EC for different networks such as cognitive radio networks (CRNs), cellular networks, relay networks, adhoc networks, and mesh networks. We explore five case studies encompassing EC operation with different design and architectural requirements. We survey various delay-sensitive applications such as voice and video with their EC analysis under certain delay constraints. We finally present the future research directions with open issues covering EC maximization

    Feasibility of 5G mm-wave communication for connected autonomous vehicles

    Full text link
    The internet-of-things (IoT) environment holds different intelligent components networked together and will enable seamless data communication between the connected components. Connected autonomous vehicles or CAVs are major components of the IoT, and the smooth, reliable, and safe operation of CAVs demands a reliable wireless communication system, which can ensure high connectivity, high throughput and low communication latency. The 5G millimeter-wave or mm-wave communication network offers such benefits, which can be the enabler of CAVs, especially for dense congested areas. In this research, we have evaluated the 5G mm-wave and Dedicated Short Range Communication (DSRC) for different CAV applications in a Network Simulator-3 (ns-3). For the CAV applications, we have evaluated the end-to-end latency, packet loss, and data rate (for both the CAV receiver and transmitter) of the 5G mm-wave. We have found that 5G mm-wave can support CAV safety applications by ensuring lower latency compared to the required minimum latency of 200 milliseconds for the forward collision warning application. For mobility applications, we have found that 5G mm-wave can support multiple CAVs with a high data receive rate, which is enough for real-time high definition video streaming for in-vehicle infotainment, with mean packet delay of 13 milliseconds. The findings from this study establish that 5G mm-wave can be the enabler of future CAVs in congested areas. Using the evaluation framework developed in this paper, public agencies can evaluate 5G mm-wave to support CAVs in congested areas, such as heavy pedestrian areas like downtown, commercial zones, under their jurisdiction.Comment: 16 pages, 3 tables, 6 figure

    Aerial-Terrestrial Communications: Terrestrial Cooperation and Energy-Efficient Transmissions to Aerial-Base Stations

    Full text link
    Hybrid aerial-terrestrial communication networks based on Low Altitude Platforms (LAPs) are expected to optimally meet the urgent communication needs of emergency relief and recovery operations for tackling large scale natural disasters. The energy-efficient operation of such networks is important given the fact that the entire network infrastructure, including the battery operated ground terminals, exhibits requirements to operate under power-constrained situations. In this paper, we discuss the design and evaluation of an adaptive cooperative scheme intended to extend the survivability of the battery operated aerial-terrestrial communication links. We propose and evaluate a real-time adaptive cooperative transmission strategy for dynamic selection between direct and cooperative links based on the channel conditions for improved energy efficiency. We show that the cooperation between mobile terrestrial terminals on the ground could improve the energy efficiency in the uplink depending on the temporal behavior of the terrestrial and the aerial uplink channels. The corresponding delay in having cooperative (relay-based) communications with relay selection is also addressed. The simulation analysis corroborates that the adaptive transmission technique improves the overall energy efficiency of the network whilst maintaining low latency enabling real time applications.Comment: To Appear In IEEE Transactions On Aerospace And Electronic Systems, 201

    Power-Aware Hybrid Intrusion Detection System (PHIDS) using Cellular Automata in Wireless AdHoc Networks

    Full text link
    Adhoc wireless network with their changing topology and distributed nature are more prone to intruders. The network monitoring functionality should be in operation as long as the network exists with nil constraints. The efficiency of an Intrusion detection system in the case of an adhoc network is not only determined by its dynamicity in monitoring but also in its flexibility in utilizing the available power in each of its nodes. In this paper we propose a hybrid intrusion detection system, based on a power level metric for potential adhoc hosts, which is used to determine the duration for which a particular node can support a network monitoring node. Power aware hybrid intrusion detection system focuses on the available power level in each of the nodes and determines the network monitors. Power awareness in the network results in maintaining power for network monitoring, with monitors changing often, since it is an iterative power optimal solution to identify nodes for distributed agent based intrusion detection. The advantage that this approach entails is the inherent flexibility it provides, by means of considering only fewer nodes for reestablishing network monitors. The detection of intrusions in the network is done with the help of Cellular Automat CA. The CAs classify a packet routed through the network either as normal or an intrusion. The use of CAs enable in the identification of already occurred intrusions as well as new intrusions

    Delay Analysis of Spatially-Coded MIMO-ZFBF with Retransmissions in Random Networks

    Full text link
    For a low-mobile Poisson bipolar network and under line-of-sight/non-line-of-sight (LOS/NLOS) path-loss model, we study repetitive retransmissions (RR) and blocked incremental redundancy (B-IR). We consider spatially-coded multiple-input multiple-output (MIMO) zero-forcing beamforming (ZFBF) multiplexing system, whereby the packet success reception is determined based on the aggregate data rate across spatial dimensions of the MIMO system. Characterization of retransmission performance in this low-mobile configuration is practically important, but inherently complex due to a substantial rate correlation across retransmissions and intractability of evaluating the probability density function (pdf) of aggregate data rate. Adopting tools of stochastic geometry, we firstly characterize the rate correlation coefficient (RCC) for both schemes. Our results show that, compared to RR scheme, B-IR scheme has higher RCC while its coverage probability is substantially larger. We demonstrate that the spotted contention between coverage probability and RCC causes the mean transmission delay (MTD) of B-IR to become either smaller or larger than the MTD of RR scheme. Finally, we develop a numerical approximation of MTD, and evaluate the effective spatial throughput (EST), which is reciprocal to MTD, of RR and B-IR schemes. Our numerical results highlight fundamental tradeoffs between densification, multiplexing gain, block length, and activity factor of nodes. We further observe that for dense networks 1) LOS component is considerably instrumental to enhance EST; 2) EST of B-IR scheme can be much higher than that of RR scheme; 3) When Doppler spread exists, it can improve MTD of B-IR while it does not cast any meaningful effect on the MTD of RR.Comment: 16 page

    Enhanced capacity & coverage by Wi-Fi LTE Integration

    Full text link
    Wi-Fi provides cost-effective data capacity at hotspots in conjunction with broadband cellular networks. The hotspots are required to capture a large number of users and provide high data rates. Data rates, over the Wi-Fi interface, are influenced by the media access protocol, which loses throughput due to delays and unintended collisions when a large number of users are active. The hotspot range which determines the number of users, that can associate, is limited by the lower power of the client rather than the access point. By diverting the traffic destined to the access point via another access network, both range and efficiency can be improved. This uplink redirection or diversion is achieved by simultaneous use of the Wi-Fi and LTE radio interfaces. Three options - loose, tight, and hybrid integration are presented towards providing enhanced capacity and coverage.Comment: Submitted as a candidate article for IEEE Communications Magazine, Topic: The Future of Wi-Fi (November 2014

    A Lyapunov Optimization Approach for Green Cellular Networks with Hybrid Energy Supplies

    Full text link
    Powering cellular networks with renewable energy sources via energy harvesting (EH) has recently been proposed as a promising solution for green networking. However, with intermittent and random energy arrivals, it is challenging to provide satisfactory quality of service (QoS) in EH networks. To enjoy the greenness brought by EH while overcoming the instability of the renewable energy sources, hybrid energy supply (HES) networks that are powered by both EH and the electric grid have emerged as a new paradigm for green communications. In this paper, we will propose new design methodologies for HES green cellular networks with the help of Lyapunov optimization techniques. The network service cost, which addresses both the grid energy consumption and achievable QoS, is adopted as the performance metric, and it is optimized via base station assignment and power control (BAPC). Our main contribution is a low-complexity online algorithm to minimize the long-term average network service cost, namely, the Lyapunov optimization-based BAPC (LBAPC) algorithm. One main advantage of this algorithm is that the decisions depend only on the instantaneous side information without requiring distribution information of channels and EH processes. To determine the network operation, we only need to solve a deterministic per-time slot problem, for which an efficient inner-outer optimization algorithm is proposed. Moreover, the proposed algorithm is shown to be asymptotically optimal via rigorous analysis. Finally, sample simulation results are presented to verify the theoretical analysis as well as validate the effectiveness of the proposed algorithm.Comment: 15 pages, 8 figures, to appear in IEEE Journal on Selected Areas in Communication

    A Multi-Scale Spatiotemporal Perspective of Connected and Automated Vehicles: Applications and Wireless Networking

    Full text link
    Wireless communication is a basis of the vision of connected and automated vehicles (CAVs). Given the heterogeneity of both wireless communication technologies and CAV applications, one question that is critical to technology road-mapping and policy making is which communication technology is more suitable for a specific CAV application. Focusing on the technical aspect of this question, we present a multi-scale spatiotemporal perspective of wireless communication technologies as well as canonical CAV applications in active safety, fuel economy and emission control, vehicle automation, and vehicular infotainment. Our analysis shows that CAV applications in the regime of small spatiotemporal scale communication requirements are best supported by V2V communications, applications in the regime of large spatiotemporal scale communication requirements are better supported by cellular communications, and applications in the regime of small spatial scale but medium-to-large temporal scale can be supported by both V2V and cellular communications and provide the opportunity of leveraging heterogeneous communication resources
    • …
    corecore