1,001 research outputs found

    Data-Driven Forecasting of High-Dimensional Chaotic Systems with Long Short-Term Memory Networks

    Full text link
    We introduce a data-driven forecasting method for high-dimensional chaotic systems using long short-term memory (LSTM) recurrent neural networks. The proposed LSTM neural networks perform inference of high-dimensional dynamical systems in their reduced order space and are shown to be an effective set of nonlinear approximators of their attractor. We demonstrate the forecasting performance of the LSTM and compare it with Gaussian processes (GPs) in time series obtained from the Lorenz 96 system, the Kuramoto-Sivashinsky equation and a prototype climate model. The LSTM networks outperform the GPs in short-term forecasting accuracy in all applications considered. A hybrid architecture, extending the LSTM with a mean stochastic model (MSM-LSTM), is proposed to ensure convergence to the invariant measure. This novel hybrid method is fully data-driven and extends the forecasting capabilities of LSTM networks.Comment: 31 page

    Wind Power Forecasting Methods Based on Deep Learning: A Survey

    Get PDF
    Accurate wind power forecasting in wind farm can effectively reduce the enormous impact on grid operation safety when high permeability intermittent power supply is connected to the power grid. Aiming to provide reference strategies for relevant researchers as well as practical applications, this paper attempts to provide the literature investigation and methods analysis of deep learning, enforcement learning and transfer learning in wind speed and wind power forecasting modeling. Usually, wind speed and wind power forecasting around a wind farm requires the calculation of the next moment of the definite state, which is usually achieved based on the state of the atmosphere that encompasses nearby atmospheric pressure, temperature, roughness, and obstacles. As an effective method of high-dimensional feature extraction, deep neural network can theoretically deal with arbitrary nonlinear transformation through proper structural design, such as adding noise to outputs, evolutionary learning used to optimize hidden layer weights, optimize the objective function so as to save information that can improve the output accuracy while filter out the irrelevant or less affected information for forecasting. The establishment of high-precision wind speed and wind power forecasting models is always a challenge due to the randomness, instantaneity and seasonal characteristics

    Data-assisted reduced-order modeling of extreme events in complex dynamical systems

    Get PDF
    Dynamical systems with high intrinsic dimensionality are often characterized by extreme events having the form of rare transitions several standard deviations away from the mean. For such systems, order-reduction methods through projection of the governing equations have limited applicability due to the large intrinsic dimensionality of the underlying attractor but also the complexity of the transient events. An alternative approach is data-driven techniques that aim to quantify the dynamics of specific modes utilizing data-streams. Several of these approaches have improved performance by expanding the state representation using delayed coordinates. However, such strategies are limited in regions of the phase space where there is a small amount of data available, as is the case for extreme events. In this work, we develop a blended framework that integrates an imperfect model, obtained from projecting equations into a subspace that still contains crucial dynamical information, with data-streams through a recurrent neural network (RNN) architecture. In particular, we employ the long-short-term memory (LSTM), to model portions of the dynamics which cannot be accounted by the equations. The RNN is trained by analyzing the mismatch between the imperfect model and the data-streams, projected in the reduced-order space. In this way, the data-driven model improves the imperfect model in regions where data is available, while for locations where data is sparse the imperfect model still provides a baseline for the prediction of the system dynamics. We assess the developed framework on two challenging prototype systems exhibiting extreme events and show that the blended approach has improved performance compared with methods that use either data streams or the imperfect model alone. The improvement is more significant in regions associated with extreme events, where data is sparse.Comment: Submitted to PLOS ONE on March 8, 201

    Investigating the Predictability of a Chaotic Time-Series Data using Reservoir Computing, Deep-Learning and Machine- Learning on the Short-, Medium- and Long-Term Pricing of Bitcoin and Ethereum.

    Get PDF
    This study will investigate the predictability of a Chaotic time-series data using Reservoir computing (Echo State Network), Deep-Learning(LSTM) and Machine- Learning(Linear, Bayesian, ElasticNetCV , Random Forest, XGBoost Regression and a machine learning Neural Network) on the short (1-day out prediction), medium (5-day out prediction) and long-term (30-day out prediction) pricing of Bitcoin and Ethereum Using a range of machine learning tools, to perform feature selection by permutation importance to select technical indicators on the individual cryptocurrencies, to ensure the datasets are the best for predictions per cryptocurrency while reducing noise within the models. The predictability of these two chaotic time-series is then compared to evaluate the models to find the best fit model. The models are fine-tuned, with hyperparameters, design of the network within the LSTM and the reservoir size within the Echo State Network being adjusted to improve accuracy and speed. This research highlights the effect of the trends within the cryptocurrency and its effect on predictive models, these models will then be optimized with hyperparameter tuning, and be evaluated to compare the models across the two currencies. It is found that the datasets for each cryptocurrency are different, due to the different permutation importance, which does not affect the overall predictability of the models with the short and medium-term predictions having the same models being the top performers. This research confirms that the chaotic data although can have positive results for shortand medium-term prediction, for long-term prediction, technical analysis basedprediction is not sufficient

    Data-driven discovery of coordinates and governing equations

    Full text link
    The discovery of governing equations from scientific data has the potential to transform data-rich fields that lack well-characterized quantitative descriptions. Advances in sparse regression are currently enabling the tractable identification of both the structure and parameters of a nonlinear dynamical system from data. The resulting models have the fewest terms necessary to describe the dynamics, balancing model complexity with descriptive ability, and thus promoting interpretability and generalizability. This provides an algorithmic approach to Occam's razor for model discovery. However, this approach fundamentally relies on an effective coordinate system in which the dynamics have a simple representation. In this work, we design a custom autoencoder to discover a coordinate transformation into a reduced space where the dynamics may be sparsely represented. Thus, we simultaneously learn the governing equations and the associated coordinate system. We demonstrate this approach on several example high-dimensional dynamical systems with low-dimensional behavior. The resulting modeling framework combines the strengths of deep neural networks for flexible representation and sparse identification of nonlinear dynamics (SINDy) for parsimonious models. It is the first method of its kind to place the discovery of coordinates and models on an equal footing.Comment: 25 pages, 6 figures; added acknowledgment
    corecore