27 research outputs found

    Disaster and Pandemic Management Using Machine Learning: A Survey

    Get PDF
    This article provides a literature review of state-of-the-art machine learning (ML) algorithms for disaster and pandemic management. Most nations are concerned about disasters and pandemics, which, in general, are highly unlikely events. To date, various technologies, such as IoT, object sensing, UAV, 5G, and cellular networks, smartphone-based system, and satellite-based systems have been used for disaster and pandemic management. ML algorithms can handle multidimensional, large volumes of data that occur naturally in environments related to disaster and pandemic management and are particularly well suited for important related tasks, such as recognition and classification. ML algorithms are useful for predicting disasters and assisting in disaster management tasks, such as determining crowd evacuation routes, analyzing social media posts, and handling the post-disaster situation. ML algorithms also find great application in pandemic management scenarios, such as predicting pandemics, monitoring pandemic spread, disease diagnosis, etc. This article first presents a tutorial on ML algorithms. It then presents a detailed review of several ML algorithms and how we can combine these algorithms with other technologies to address disaster and pandemic management. It also discusses various challenges, open issues and, directions for future research

    Coordinated Transit Response Planning and Operations Support Tools for Mitigating Impacts of All-Hazard Emergency Events

    Get PDF
    This report summarizes current computer simulation capabilities and the availability of near-real-time data sources allowing for a novel approach of analyzing and determining optimized responses during disruptions of complex multi-agency transit system. The authors integrated a number of technologies and data sources to detect disruptive transit system performance issues, analyze the impact on overall system-wide performance, and statistically apply the likely traveler choices and responses. The analysis of unaffected transit resources and the provision of temporary resources are then analyzed and optimized to minimize overall impact of the initiating event

    Optimising shelter location and evacuation routing operations: The critical issues

    Get PDF
    Shelter opening and evacuation of vulnerable populations are operations crucial to disaster response, which is one of the four phases of Disaster Operations Management (DOM). Optimisation has tried to capture some of the different issues related to shelter location and evacuation routing: several models have been developed over the years. However, they are still far from being fully comprehensive. The aim of this paper is to identify the current challenges in devising realistic and applicable optimisation models in the shelter location and evacuation routing context, with the ultimate goal of outlining a roadmap for future research in this topical area. A critical analysis of the most recent combined models is provided, including insights from the authors of the existing papers. The analysis highlights numerous gaps and research opportunities, such as the need for future optimisation models to involve stakeholders, include evacuee as well as system behaviour, be application-oriented rather than theoretical or model-driven, and interdisciplinary

    Advances and Novel Approaches in Discrete Optimization

    Get PDF
    Discrete optimization is an important area of Applied Mathematics with a broad spectrum of applications in many fields. This book results from a Special Issue in the journal Mathematics entitled ‘Advances and Novel Approaches in Discrete Optimization’. It contains 17 articles covering a broad spectrum of subjects which have been selected from 43 submitted papers after a thorough refereeing process. Among other topics, it includes seven articles dealing with scheduling problems, e.g., online scheduling, batching, dual and inverse scheduling problems, or uncertain scheduling problems. Other subjects are graphs and applications, evacuation planning, the max-cut problem, capacitated lot-sizing, and packing algorithms

    Optimization Approaches for Improving Mitigation and Response Operations in Disaster Management

    Get PDF
    Disasters are calamitous events that severely affect the life conditions of an entire community, being the disasters either nature-based (e.g., earthquake) or man-made (e.g., terroristic attack). Disaster-related issues are usually dealt with according to the Disaster Operations Management (DOM) framework, which is composed of four phases: mitigation and preparedness, which address pre-disaster issues, and response and recovery, which tackle problems arising after the occurrence of a disaster. The ultimate scope of this dissertation is to present novel optimization models and algorithms aimed at improving operations belonging to the mitigation and response phases of the DOM. On the mitigation side, this thesis focuses on the protection of Critical Information Infrastructures (CII), which are commonly deemed to include communication and information networks. The majority of all the other Critical Infrastructures (CI), such as electricity, fuel and water supply as well as transportation systems, are crucially dependent on CII. Therefore, problems associated with CII that disrupt the services they are able to provide (whether to a single end-user or to another CI) are of increasing interest. This dissertation reviews several issues emerging in the Critical Information Infrastructures Protection (CIIP), field such as: how to identify the most critical components of a communication network whose disruption would affect the overall system functioning; how to mitigate the consequences of such calamitous events through protection strategies; and how to design a system which is intrinsically able to hedge against disruptions. To this end, this thesis provides a description of the seminal optimization models that have been developed to address the aforementioned issues in the general field of Critical Infrastructures Protection (CIP). Models are grouped in three categories which address the aforementioned issues: survivability-oriented interdiction, resource allocation strategy, and survivable design models; existing models are reviewed and possible extensions are proposed. In fact, some models have already been developed for CII (i.e., survivability-interdiction and design models), while others have been adapted from the literature on other CI (i.e., resource allocation strategy models). The main gap emerging in the CII field is that CII protection has been quite overlooked which has led to review optimization models that have been developed for the protection of other CI. Hence, this dissertation contributes to the literature in the field by also providing a survey of the multi-level programs that have been developed for protecting supply chains, transportation systems (e.g., railway infrastructures), and utility networks (e.g., power and water supply systems), in order to adapt them for CII protection. Based on the review outcomes, this thesis proposes a novel linear bi-level program for CIIP to mitigate worst-case disruptions through protection investments entailing network design operations, namely the Critical Node Detection Problem with Fortification (CNDPF), which integrates network survivability assessment, resource allocation strategies and design operations. To the best of my knowledge, this is the first bi-level program developed for CIIP. The model is solved through a Super Valid Inequalities (SVI) decomposition approach and a Greedy Constructive and Local Search (GCLS) heuristic. Computational results are reported for real communication networks and for different levels of both disaster magnitude and protection resources. On the response side, this thesis identifies the current challenges in devising realistic and applicable optimization models in the shelter location and evacuation routing context and outlines a roadmap for future research in this topical area. A shelter is a facility where people belonging to a community hit by a disaster are provided with different kinds of services (e.g., medical assistance, food). The role of a shelter is fundamental for two categories of people: those who are unable to make arrangements to other safe places (e.g., family or friends are too far), and those who belong to special-needs populations (e.g., disabled, elderly). People move towards shelter sites, or alternative safe destinations, when they either face or are going to face perilous circumstances. The process of leaving their own houses to seek refuge in safe zones goes under the name of evacuation. Two main types of evacuation can be identified: self-evacuation (or car-based evacuation) where individuals move towards safe sites autonomously, without receiving any kind of assistance from the responder community, and supported evacuation where special-needs populations (e.g., disabled, elderly) require support from emergency services and public authorities to reach some shelter facilities. This dissertation aims at identifying the central issues that should be addressed in a comprehensive shelter location/evacuation routing model. This is achieved by a novel meta-analysis that entail: (1) analysing existing disaster management surveys, (2) reviewing optimization models tackling shelter location and evacuation routing operations, either separately or in an integrated manner, (3) performing a critical analysis of existing papers combining shelter location and evacuation routing, concurrently with the responses of their authors, and (4) comparing the findings of the analysis of the papers with the findings of the existing disaster management surveys. The thesis also provides a discussion on the emergent challenges of shelter location and evacuation routing in optimization such as the need for future optimization models to involve stakeholders, include evacuee as well as system behaviour, be application-oriented rather than theoretical or model-driven, and interdisciplinary and, eventually, outlines a roadmap for future research. Based on the identified challenges, this thesis presents a novel scenario-based mixed-integer program which integrates shelter location, self-evacuation and supported-evacuation decisions, namely the Scenario-Indexed Shelter Location and Evacuation Routing (SISLER) problem. To the best of my knowledges, this is the second model including shelter location, self-evacuation and supported-evacuation however, SISLER deals with them based on the provided meta-analysis. The model is solved through a Branch-and-Cut algorithm of an off-the-shelf software, enriched with valid inequalities adapted from the literature. Computational results are reported for both testbed instances and a realistic case study

    Intelligent evacuation management systems: A review

    Get PDF
    Crowd and evacuation management have been active areas of research and study in the recent past. Various developments continue to take place in the process of efficient evacuation of crowds in mass gatherings. This article is intended to provide a review of intelligent evacuation management systems covering the aspects of crowd monitoring, crowd disaster prediction, evacuation modelling, and evacuation path guidelines. Soft computing approaches play a vital role in the design and deployment of intelligent evacuation applications pertaining to crowd control management. While the review deals with video and nonvideo based aspects of crowd monitoring and crowd disaster prediction, evacuation techniques are reviewed via the theme of soft computing, along with a brief review on the evacuation navigation path. We believe that this review will assist researchers in developing reliable automated evacuation systems that will help in ensuring the safety of the evacuees especially during emergency evacuation scenarios

    New approaches to evacuation modelling for fire safety engineering applications

    Get PDF
    This paper presents the findings of the workshop “New approaches to evacuation modelling”, which took place on the 11th of June 2017 in Lund (Sweden) within the Symposium of the International Association for Fire Safety Science (IAFSS). The workshop gathered international experts in the field of fire evacuation modelling from 19 different countries and was designed to build a dialogue between the fire evacuation modelling world and experts in areas outside of fire safety engineering. The contribution to fire evacuation modelling of five topics within research disciplines outside fire safety engineering (FSE) have been discussed during the workshop, namely 1) Psychology/Human Factors, 2) Sociology, 3) Applied Mathematics, 4) Transportation, 5) Dynamic Simulation and Biomechanics. The benefits of exchanging information between these two groups are highlighted here in light of the topic areas discussed and the feedback received by the evacuation modelling community during the workshop. This included the feasibility of development/application of modelling methods based on fields other than FSE as well as a discussion on their implementation strengths and limitations. Each subject area is here briefly presented and its links to fire evacuation modelling are discussed. The feedback received during the workshop is discussed through a set of insights which might be useful for the future developments of evacuation models for fire safety engineering

    Analysis of dynamic traffic control and management strategies

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Optimization for Decision Making II

    Get PDF
    In the current context of the electronic governance of society, both administrations and citizens are demanding the greater participation of all the actors involved in the decision-making process relative to the governance of society. This book presents collective works published in the recent Special Issue (SI) entitled “Optimization for Decision Making II”. These works give an appropriate response to the new challenges raised, the decision-making process can be done by applying different methods and tools, as well as using different objectives. In real-life problems, the formulation of decision-making problems and the application of optimization techniques to support decisions are particularly complex and a wide range of optimization techniques and methodologies are used to minimize risks, improve quality in making decisions or, in general, to solve problems. In addition, a sensitivity or robustness analysis should be done to validate/analyze the influence of uncertainty regarding decision-making. This book brings together a collection of inter-/multi-disciplinary works applied to the optimization of decision making in a coherent manner
    corecore