5,095 research outputs found

    ROBUST OPTIMIZATION OF STOCHASTIC HYBRID JOB-SHOP SCHEDULING WITH MULTIPROCESSOR TASK

    Get PDF
    Due to the large number of uncertainties in the production workshop, the actual performance of the scheduling scheme deviated significantly from the theoretical value. In order to enhance its anti-jamming capability, this paper developed the robust optimization of stochastic hybrid job-shop scheduling with multiprocessors tasks. Firstly, predictable uncertainties were abstracted into processing time variations and described by scenario analysis in the modeling process. Secondly, based on the analysis of the advantages and disadvantages of traditional robust optimization models, a new Expected Cmax and the Worst scenario Model (ECWM) was proposed. The model improved the single-index robust optimization model and avoided the disadvantage that the Max Regret Model is computationally intensive. Finally, the effectiveness of ECWM is verified by simulation experiments. The results show that the scheduling obtained by ECWM has good average performance and anti-risk ability, which indicates that the model achieves a good balance in scheduling performance enthusiasm and risk resistance

    Design and Analysis of an Estimation of Distribution Approximation Algorithm for Single Machine Scheduling in Uncertain Environments

    Full text link
    In the current work we introduce a novel estimation of distribution algorithm to tackle a hard combinatorial optimization problem, namely the single-machine scheduling problem, with uncertain delivery times. The majority of the existing research coping with optimization problems in uncertain environment aims at finding a single sufficiently robust solution so that random noise and unpredictable circumstances would have the least possible detrimental effect on the quality of the solution. The measures of robustness are usually based on various kinds of empirically designed averaging techniques. In contrast to the previous work, our algorithm aims at finding a collection of robust schedules that allow for a more informative decision making. The notion of robustness is measured quantitatively in terms of the classical mathematical notion of a norm on a vector space. We provide a theoretical insight into the relationship between the properties of the probability distribution over the uncertain delivery times and the robustness quality of the schedules produced by the algorithm after a polynomial runtime in terms of approximation ratios

    Using real-time information to reschedule jobs in a flowshop with variable processing times

    Get PDF
    Versión revisada. Embargo 36 mesesIn a time where detailed, instantaneous and accurate information on shop-floor status is becoming available in many manufacturing companies due to Information Technologies initiatives such as Smart Factory or Industry 4.0, a question arises regarding when and how this data can be used to improve scheduling decisions. While it is acknowledged that a continuous rescheduling based on the updated information may be beneficial as it serves to adapt the schedule to unplanned events, this rather general intuition has not been supported by a thorough experimentation, particularly for multi-stage manufacturing systems where such continuous rescheduling may introduce a high degree of nervousness in the system and deteriorates its performance. In order to study this research problem, in this paper we investigate how real-time information on the completion times of the jobs in a flowshop with variable processing times can be used to reschedule the jobs. In an exhaustive computational experience, we show that rescheduling policies pay off as long as the variability of the processing times is not very high, and only if the initially generated schedule is of good quality. Furthermore, we propose several rescheduling policies to improve the performance of continuous rescheduling while greatly reducing the frequency of rescheduling. One of these policies, based on the concept of critical path of a flowshop, outperforms the rest of policies for a wide range of scenarios.Ministerio de Ciencia e Innovación DPI2016-80750-

    Satisfying flexible due dates in fuzzy job shop by means of hybrid evolutionary algorithms

    Get PDF
    This paper tackles the job shop scheduling problem with fuzzy sets modelling uncertain durations and flexible due dates. The objective is to achieve high-service level by maximising due-date satisfaction, considering two different overall satisfaction measures as objective functions. We show how these functions model different attitudes in the framework of fuzzy multicriteria decision making and we define a measure of solution robustness based on an existing a-posteriori semantics of fuzzy schedules to further assess the quality of the obtained solutions. As solving method, we improve a memetic algorithm from the literature by incorporating a new heuristic mechanism to guide the search through plateaus of the fitness landscape. We assess the performance of the resulting algorithm with an extensive experimental study, including a parametric analysis, and a study of the algorithm’s components and synergy between them. We provide results on a set of existing and new benchmark instances for fuzzy job shop with flexible due dates that show the competitiveness of our method.This research has been supported by the Spanish Government under research grant TIN2016-79190-R

    A Fuzzy Simheuristic for the Permutation Flow Shop Problem under Stochastic and Fuzzy Uncertainty

    Get PDF
    [EN] Stochastic, as well as fuzzy uncertainty, can be found in most real-world systems. Considering both types of uncertainties simultaneously makes optimization problems incredibly challenging. In this paper, we analyze the permutation flow shop problem (PFSP) with both stochastic and fuzzy processing times. The main goal is to find the solution (permutation of jobs) that minimizes the expected makespan. However, due to the existence of uncertainty, other characteristics of the solution are also taken into account. In particular, we illustrate how survival analysis can be employed to enrich the probabilistic information given to decision-makers. To solve the aforementioned optimization problem, we extend the concept of a simheuristic framework so it can also include fuzzy elements. Hence, both stochastic and fuzzy uncertainty are simultaneously incorporated in the PFSP. In order to test our approach, classical PFSP instances have been adapted and extended, so that processing times become either stochastic or fuzzy. The experimental results show the effectiveness of the proposed approach when compared with more traditional ones.This work has been partially supported by the Spanish Ministry of Science (PID2019111100RB-C21/AEI/10.13039/501100011033), as well as by the Barcelona Council and the "la Caixa" Foundation under the framework of the Barcelona Science Plan 2020-2023 (grant 21S09355-001).Castaneda, J.; Martín, XA.; Ammouriova, M.; Panadero, J.; Juan-Pérez, ÁA. (2022). A Fuzzy Simheuristic for the Permutation Flow Shop Problem under Stochastic and Fuzzy Uncertainty. Mathematics. 10(10):1-17. https://doi.org/10.3390/math10101760117101

    Investigating a Hybrid Metaheuristic For Job Shop Rescheduling

    Get PDF
    Previous research has shown that artificial immune systems can be used to produce robust schedules in a manufacturing environment. The main goal is to develop building blocks (antibodies) of partial schedules that can be used to construct backup solutions (antigens) when disturbances occur during production. The building blocks are created based upon underpinning ideas from artificial immune systems and evolved using a genetic algorithm (Phase I). Each partial schedule (antibody) is assigned a fitness value and the best partial schedules are selected to be converted into complete schedules (antigens). We further investigate whether simulated annealing and the great deluge algorithm can improve the results when hybridised with our artificial immune system (Phase II). We use ten fixed solutions as our target and measure how well we cover these specific scenarios

    A simheuristic algorithm for solving an integrated resource allocation and scheduling problem

    Get PDF
    Modern companies have to face challenging configuration issues in their manufacturing chains. One of these challenges is related to the integrated allocation and scheduling of resources such as machines, workers, energy, etc. These integrated optimization problems are difficult to solve, but they can be even more challenging when real-life uncertainty is considered. In this paper, we study an integrated allocation and scheduling optimization problem with stochastic processing times. A simheuristic algorithm is proposed in order to effectively solve this integrated and stochastic problem. Our approach relies on the hybridization of simulation with a metaheuristic to deal with the stochastic version of the allocation-scheduling problem. A series of numerical experiments contribute to illustrate the efficiency of our methodology as well as their potential applications in real-life enterprise settings

    Robust schedules for tardiness optimization in job shop with interval uncertainty

    Get PDF
    This paper addresses a variant of the job shop scheduling problem with total tardiness minimization where task durations and due dates are uncertain. This uncertainty is modelled with intervals. Different ranking methods for intervals are considered and embedded into a genetic algorithm. A new robustness measure is proposed to compare the different ranking methods and assess their capacity to predict ‘expected delays’ of jobs. Experimental results show that dealing with uncertainty during the optimization process yields more robust solutions. A sensitivity analysis also shows that the robustness of the solutions given by the solving method increases when the uncertainty grows.This research has been supported by the Spanish Government under research grants PID2019-106263RB-I00 and TIN2017-87600-P
    corecore