1,270 research outputs found

    Data-driven Soft Sensors in the Process Industry

    Get PDF
    In the last two decades Soft Sensors established themselves as a valuable alternative to the traditional means for the acquisition of critical process variables, process monitoring and other tasks which are related to process control. This paper discusses characteristics of the process industry data which are critical for the development of data-driven Soft Sensors. These characteristics are common to a large number of process industry fields, like the chemical industry, bioprocess industry, steel industry, etc. The focus of this work is put on the data-driven Soft Sensors because of their growing popularity, already demonstrated usefulness and huge, though yet not completely realised, potential. A comprehensive selection of case studies covering the three most important Soft Sensor application fields, a general introduction to the most popular Soft Sensor modelling techniques as well as a discussion of some open issues in the Soft Sensor development and maintenance and their possible solutions are the main contributions of this work

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    Hybrid intelligence model based on image features for the prediction of flotation concentrate grade

    Get PDF
    In flotation processes, concentrate grade is the key production index but is difficult to be measured online. The mechanism models reflect the basic tendency of concentrate grade changes but cannot provide adequate prediction precision. The data-driven models based on froth image features provide accurate prediction within well-sampled space but rely heavily on sample data with less generalization capability. So, a hybrid intelligent model combining the two kinds of model is proposed in this paper. Since the information of image features is enormous, and the relationship between image features and concentrate grade is nonlinear, a B-spline partial least squares (BS-PLS) method is adopted to construct the data-driven model for concentrate grade prediction. In order to gain better generalization capability and prediction accuracy, information entropy is introduced to integrate the mechanism model and the BS-PLS model together and modify the model output online through an output deviation compensation strategy. Moreover, a slide window scheme is employed to update the hybrid model in order to improve its adaptability. The industrial practical data testing results show that the performance of the hybrid model is better than either of the two single models and it satisfies the accuracy and stability requirements in industrial applications

    Mitigation of environmental hazards of sulfide mineral flotation with an insight into froth stability and flotation performance

    Get PDF
    Today\u27s major challenges facing the flotation of sulfide minerals involve constant variability in the ore composition; environmental concerns; water scarcity and inefficient plant performance. The present work addresses these challenges faced by the flotation process of complex sulfide ore of Mississippi Valley type with an insight into the froth stability and the flotation performance. The first project in this study was aimed at finding the optimum conditions for the bulk flotation of galena (PbS) and chalcopyrite (CuFeS₂) through Response Surface Methodology (RSM). In the second project, an attempt was made to replace toxic sodium cyanide (NaCN) with the biodegradable chitosan polymer as pyrite depressant. To achieve an optimum flotation performance and froth stability, the third project utilized two types of nanoparticles; silica (SiO₂) and alumina (Al₂O₃) as process aids. The fourth project investigated the impact of water chemistry on the process outcomes in an attempt to replace fresh water with sea water. In the last project, five artificial intelligence (AI) and machine learning (ML) models were employed to model the flotation performance of the ore which will allow the building of intelligent systems that can be used to predict the process outcomes of polymetallic sulfides. It was concluded that chitosan can be successfully used as a biodegradable depressant. Alumina nanoparticles successfully enhanced both froth stability and flotation performance while silica nanoparticles did not. Seawater had a negative effect on both the froth stability and the grade of lead (Pb) and copper (Cu) but it improved the recoveries of both Pb and Cu minerals. Hybrid Neural Fuzzy Interference System (HyFIS) ML model showed the best accuracy to be adopted for automated sulfide ore flotation process in the future --Abstract, page iii

    Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes

    Get PDF
    The book documents 25 papers collected from the Special Issue “Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes”, highlighting recent research trends in complex industrial processes. The book aims to stimulate the research field and be of benefit to readers from both academic institutes and industrial sectors

    A novel distribution-free hybrid regression model for manufacturing process efficiency improvement

    Full text link
    This work is motivated by a particular problem of a modern paper manufacturing industry, in which maximum efficiency of the fiber-filler recovery process is desired. A lot of unwanted materials along with valuable fibers and fillers come out as a by-product of the paper manufacturing process and mostly goes as waste. The job of an efficient Krofta supracell is to separate the unwanted materials from the valuable ones so that fibers and fillers can be collected from the waste materials and reused in the manufacturing process. The efficiency of Krofta depends on several crucial process parameters and monitoring them is a difficult proposition. To solve this problem, we propose a novel hybridization of regression trees (RT) and artificial neural networks (ANN), hybrid RT-ANN model, to solve the problem of low recovery percentage of the supracell. This model is used to achieve the goal of improving supracell efficiency, viz., gain in percentage recovery. In addition, theoretical results for the universal consistency of the proposed model are given with the optimal value of a vital model parameter. Experimental findings show that the proposed hybrid RT-ANN model achieves higher accuracy in predicting Krofta recovery percentage than other conventional regression models for solving the Krofta efficiency problem. This work will help the paper manufacturing company to become environmentally friendly with minimal ecological damage and improved waste recovery

    Experimental And Machine Learning Studies On Chitosan-Polyacrylamide Copolymers For Selective Separation Of Metal Sulfides In The Froth Flotation Process

    Get PDF
    The froth flotation process is extensively used for the selective separation of valuable base metal sulfides from uneconomic associated minerals. However, in this complex multiphase process, various parameters need to be optimized to ensure separation selectivity and peak performance. In this study, two machine learning (ML) models, artificial neural network (ANN) and random forests (RF), were used to predict the efficiency of in-house synthesized chitosan-polyacrylamide copolymers (C-PAMs) in the depression of iron sulfide minerals (i.e., pyrite) while valuable base metal sulfides (i.e., galena and chalcopyrite) were floated using nine flotation variables as inputs to the models. The prediction performance of the models was rigorously evaluated based on the coefficient of determination (R2) and the root-mean-square error (RMSE). The results showed that the RF model was able to produce high-fidelity predictions of the depression of pyrite once thoroughly trained as compared to ANN. With the RF model, the overall R2 and RMSE values were 0.88 and 4.38 for the training phase, respectively, and R2 of 0.90 and RMSE of 3.78 for the testing phase. As for the ANN, during the training phase, the overall R2 and RMSE were 0.76 and 4.75, respectively, and during the testing phase, the R2 and RMSE were 0.65 and 5.42, respectively. Additionally, fundamental investigations on the surface chemistry of C-PAMs at the mineral–water interface were conducted to give fundamental insights into the behavior of different metal sulfides during the flotation process. C-PAM was found to strongly adsorb on pyrite as compared to galena and chalcopyrite through zeta potential, X-ray photoelectron spectroscopy (XPS), and adsorption density measurements. XPS tests suggested that the adsorption mechanism of C-PAM on pyrite was through chemisorption of the amine and amide groups of the polymer

    Supervisory-plus-regulatory control design for efficient operation of industrial furnaces

    Get PDF
    A two-level system engineering design approach to integrated control and supervision of industrial multi-zone furnaces has been elaborated and tested. The application case study is the three-zone 25 MW RZS furnace plant at Skopje Steelworks. The integrated control and supervision design is based on combined use of general predictive control optimization of set-points and steady-state decoupling,at the upper level, and classical two-term laws with stady-state decouling, at the executive control level. This design technique exploits the intrinsic stability of thermal processes and makes use of constrained optimization, standard non-parametric time-domain process models, identified under operating conditions, using truncated k-time sequence matrices, controlled autoregressive moving average models. Digital implementations are sought within standard computer process control platform for practical engineering and maintenance reasons

    A hybrid multiobjective differential evolution algorithm and its application to the optimization of grinding and classification

    Get PDF
    The grinding-classification is the prerequisite process for full recovery of the nonrenewable minerals with both production quality and quantity objectives concerned. Its natural formulation is a constrained multiobjective optimization problem of complex expression since the process is composed of one grinding machine and two classification machines. In this paper, a hybrid differential evolution (DE) algorithm with multi-population is proposed. Some infeasible solutions with better performance are allowed to be saved, and they participate randomly in the evolution. In order to exploit the meaningful infeasible solutions, a functionally partitioned multi-population mechanism is designed to find an optimal solution from all possible directions. Meanwhile, a simplex method for local search is inserted into the evolution process to enhance the searching strategy in the optimization process. Simulation results from the test of some benchmark problems indicate that the proposed algorithm tends to converge quickly and effectively to the Pareto frontier with better distribution. Finally, the proposed algorithm is applied to solve a multiobjective optimization model of a grinding and classification process. Based on the technique for order performance by similarity to ideal solution (TOPSIS), the satisfactory solution is obtained by using a decision-making method for multiple attributes

    Modern Machine Learning Tools for Monitoring and Control of Industrial Processes: A Survey

    Full text link
    Over the last ten years, we have seen a significant increase in industrial data, tremendous improvement in computational power, and major theoretical advances in machine learning. This opens up an opportunity to use modern machine learning tools on large-scale nonlinear monitoring and control problems. This article provides a survey of recent results with applications in the process industry.Comment: IFAC World Congress 202
    corecore