170 research outputs found

    Hematological image analysis for acute lymphoblastic leukemia detection and classification

    Get PDF
    Microscopic analysis of peripheral blood smear is a critical step in detection of leukemia.However, this type of light microscopic assessment is time consuming, inherently subjective, and is governed by hematopathologists clinical acumen and experience. To circumvent such problems, an efficient computer aided methodology for quantitative analysis of peripheral blood samples is required to be developed. In this thesis, efforts are therefore made to devise methodologies for automated detection and subclassification of Acute Lymphoblastic Leukemia (ALL) using image processing and machine learning methods.Choice of appropriate segmentation scheme plays a vital role in the automated disease recognition process. Accordingly to segment the normal mature lymphocyte and malignant lymphoblast images into constituent morphological regions novel schemes have been proposed. In order to make the proposed schemes viable from a practical and real–time stand point, the segmentation problem is addressed in both supervised and unsupervised framework. These proposed methods are based on neural network,feature space clustering, and Markov random field modeling, where the segmentation problem is formulated as pixel classification, pixel clustering, and pixel labeling problem respectively. A comprehensive validation analysis is presented to evaluate the performance of four proposed lymphocyte image segmentation schemes against manual segmentation results provided by a panel of hematopathologists. It is observed that morphological components of normal and malignant lymphocytes differ significantly. To automatically recognize lymphoblasts and detect ALL in peripheral blood samples, an efficient methodology is proposed.Morphological, textural and color features are extracted from the segmented nucleus and cytoplasm regions of the lymphocyte images. An ensemble of classifiers represented as EOC3 comprising of three classifiers shows highest classification accuracy of 94.73% in comparison to individual members. The subclassification of ALL based on French–American–British (FAB) and World Health Organization (WHO) criteria is essential for prognosis and treatment planning. Accordingly two independent methodologies are proposed for automated classification of malignant lymphocyte (lymphoblast) images based on morphology and phenotype. These methods include lymphoblast image segmentation, nucleus and cytoplasm feature extraction, and efficient classification

    Aerospace medicine and biology: A cumulative index to a continuing bibliography (supplement 384)

    Get PDF
    This publication is a cumulative index to the abstracts contained in Supplements 372 through 383 of Aerospace Medicine and Biology: A Continuing Bibliography. It includes seven indexes: subject, personal author, corporate source, foreign technology, contract number, report number, and accession number

    Molecular and Cell Biology of Infantile (CLN1) and variant Late Infantile (CLN5) Neuronal Ceroid Lipofuscinoses

    Get PDF
    Myös verkossa; väitöskirja, ohj. Leena Peltonen-Paloti

    Automatic Population of Structured Reports from Narrative Pathology Reports

    Get PDF
    There are a number of advantages for the use of structured pathology reports: they can ensure the accuracy and completeness of pathology reporting; it is easier for the referring doctors to glean pertinent information from them. The goal of this thesis is to extract pertinent information from free-text pathology reports and automatically populate structured reports for cancer diseases and identify the commonalities and differences in processing principles to obtain maximum accuracy. Three pathology corpora were annotated with entities and relationships between the entities in this study, namely the melanoma corpus, the colorectal cancer corpus and the lymphoma corpus. A supervised machine-learning based-approach, utilising conditional random fields learners, was developed to recognise medical entities from the corpora. By feature engineering, the best feature configurations were attained, which boosted the F-scores significantly from 4.2% to 6.8% on the training sets. Without proper negation and uncertainty detection, the quality of the structured reports will be diminished. The negation and uncertainty detection modules were built to handle this problem. The modules obtained overall F-scores ranging from 76.6% to 91.0% on the test sets. A relation extraction system was presented to extract four relations from the lymphoma corpus. The system achieved very good performance on the training set, with 100% F-score obtained by the rule-based module and 97.2% F-score attained by the support vector machines classifier. Rule-based approaches were used to generate the structured outputs and populate them to predefined templates. The rule-based system attained over 97% F-scores on the training sets. A pipeline system was implemented with an assembly of all the components described above. It achieved promising results in the end-to-end evaluations, with 86.5%, 84.2% and 78.9% F-scores on the melanoma, colorectal cancer and lymphoma test sets respectively

    Advanced Representation Learning for Dense Prediction Tasks in Medical Image Analysis

    Get PDF
    Machine learning is a rapidly growing field of artificial intelligence that allows computers to learn and make predictions using human labels. However, traditional machine learning methods have many drawbacks, such as being time-consuming, inefficient, task-specific biased, and requiring a large amount of domain knowledge. A subfield of machine learning, representation learning, focuses on learning meaningful and useful features or representations from input data. It aims to automatically learn relevant features from raw data, saving time, increasing efficiency and generalization, and reducing reliance on expert knowledge. Recently, deep learning has further accelerated the development of representation learning. It leverages deep architectures to extract complex and abstract representations, resulting in significant outperformance in many areas. In the field of computer vision, deep learning has made remarkable progress, particularly in high-level and real-world computer vision tasks. Since deep learning methods do not require handcrafted features and have the ability to understand complex visual information, they facilitate researchers to design automated systems that make accurate diagnoses and interpretations, especially in the field of medical image analysis. Deep learning has achieved state-of-the-art performance in many medical image analysis tasks, such as medical image regression/classification, generation and segmentation tasks. Compared to regression/classification tasks, medical image generation and segmentation tasks are more complex dense prediction tasks that understand semantic representations and generate pixel-level predictions. This thesis focuses on designing representation learning methods to improve the performance of dense prediction tasks in the field of medical image analysis. With advances in imaging technology, more complex medical images become available for use in this field. In contrast to traditional machine learning algorithms, current deep learning-based representation learning methods provide an end-to-end approach to automatically extract representations without the need for manual feature engineering from the complex data. In the field of medical image analysis, there are three unique challenges requiring the design of advanced representation learning architectures, \ie, limited labeled medical images, overfitting with limited data, and lack of interpretability. To address these challenges, we aim to design robust representation learning architectures for the two main directions of dense prediction tasks, namely medical image generation and segmentation. For medical image generation, the specific topic that we focus on is chromosome straightening. This task involves generating a straightened chromosome image from a curved chromosome input. In addition, the challenges of this task include insufficient training images and corresponding ground truth, as well as the non-rigid nature of chromosomes, leading to distorted details and shapes after straightening. We first propose a study for the chromosome straightening task. We introduce a novel framework using image-to-image translation and demonstrate its efficacy and robustness in generating straightened chromosomes. The framework addresses the challenges of limited training data and outperforms existing studies. We then present a subsequent study to address the limitations of our previous framework, resulting in new state-of-the-art performance and better interpretability and generalization capability. We propose a new robust chromosome straightening framework, named Vit-Patch GAN, which instead learns the motion representation of chromosomes for straightening while retaining more details of shape and banding patterns. For medical image segmentation, we focus on the fovea localization task, which is transferred from localization to small region segmentation. Accurate segmentation of the fovea region is crucial for monitoring and analyzing retinal diseases to prevent irreversible vision loss. This task also requires the incorporation of global features to effectively identify the fovea region and overcome hard cases associated with retinal diseases and non-standard fovea locations. We first propose a novel two-branch architecture, Bilateral-ViT, for fovea localization in retina image segmentation. This vision-transformer-based architecture incorporates global image context and blood vessel structure. It surpasses existing methods and achieves state-of-the-art results on two public datasets. We then propose a subsequent method to further improve the performance of fovea localization. We design a novel dual-stream deep learning architecture called Bilateral-Fuser. In contrast to our previous Bilateral-ViT, Bilateral-Fuser globally incorporates long-range connections from multiple cues, including fundus and vessel distribution. Moreover, with the newly designed Bilateral Token Incorporation module, Bilateral-Fuser learns anatomical-aware tokens, significantly reducing computational costs while achieving new state-of-the-art performance. Our comprehensive experiments also demonstrate that Bilateral-Fuser achieves better accuracy and robustness on both normal and diseased retina images, with excellent generalization capability

    Molecular and cell biology of infantile (CLN1) and variant late infantile (CLN5) neuronal ceroid lipofuscinoses

    Get PDF
    Myös verkossa; väitöskirja, ohj. Leena Peltonen-Paloti
    corecore