897 research outputs found

    Fully-coupled hybrid 802.15.4a UWB/IMU position estimation in indoor environments

    Get PDF
    This paper presents a fully-coupled indoor positioning system combining IEEE 802.15.4a Ultra Wideband (UWB) with 6 degrees of freedom inertial sensing. Fully-coupled implies that the positioning system not only implements position estimation of the object by fusing the UWB and inertial measurements, but also employs the IEEE 802.15.4a UWB as a wireless communication mechanism for exchanging position-based messages between two independent nodes, and thus makes timely remote tracking possible. Two positioning approaches namely inertial navigation system (INS) and INS with UWB correction are investigated. The fully-coupled positioning system is implemented and tested in two practical cases related to indoor positioning. Experimental results show that the proposed system is capable of realizing both local and remote positioning, and the INS with UWB correction approach shows improved positioning performance when compared to the INS-only approach

    A Review of pedestrian indoor positioning systems for mass market applications

    Get PDF
    In the last decade, the interest in Indoor Location Based Services (ILBS) has increased stimulating the development of Indoor Positioning Systems (IPS). In particular, ILBS look for positioning systems that can be applied anywhere in the world for millions of users, that is, there is a need for developing IPS for mass market applications. Those systems must provide accurate position estimations with minimum infrastructure cost and easy scalability to different environments. This survey overviews the current state of the art of IPSs and classifies them in terms of the infrastructure and methodology employed. Finally, each group is reviewed analysing its advantages and disadvantages and its applicability to mass market applications

    A tripartite filter design for seamless pedestrian navigation using recursive 2-means clustering and Tukey update

    Get PDF
    Mobile devices are desired to guide users seamlessly to diverse destinations indoors and outdoors. The positioning fixing subsystems often provide poor quality measurements with gaps in an urban environment. No single position fixing technology works continuously. Many sensor fusion variations have been previously trialed to overcome this challenge, including the particle filter that is robust and the Kalman filter which is fast. However, a lack exists, of context aware, seamless systems that are able to use the most fit sensors and methods in the correct context. A novel adaptive and modular tripartite navigation filter design is presented to enable seamless navigation. It consists of a sensor subsystem, a context inference and a navigation filter blocks. A foot-mounted inertial measurement unit (IMU), a Global Navigation Satellite System (GNSS) receiver, Bluetooth Low Energy (BLE) and Ultrawideband (UWB) positioning systems were used in the evaluation implementation of this design. A novel recursive 2-means clustering method was developed to track multiple hypotheses when there are gaps in position fixes. The closest hypothesis to a new position fix is selected when the gap ends. Moreover, when the position fix quality measure is not reliable, a fusion approach using a Tukey-style particle filter measurement update is introduced. Results show the successful operation of the design implementation. The Tukey update improves accuracy by 5% and together with the clustering method the system robustness is enhanced

    A loose-coupled fusion of inertial and UWB assisted by a decision-making algorithm for localization of emergency responders

    Get PDF
    Combining different technologies is gaining significant popularity among researchers and industry for the development of indoor positioning systems (IPSs). These hybrid IPSs emerge as a robust solution for indoor localization as the drawbacks of each technology can be mitigated or even eliminated by using complementary technologies. However, fusing position estimates from different technologies is still very challenging and, therefore, a hot research topic. In this work, we pose fusing the ultrawideband (UWB) position estimates with the estimates provided by a pedestrian dead reckoning (PDR) by using a Kalman filter. To improve the IPS accuracy, a decision-making algorithm was developed that aims to assess the usability of UWB measurements based on the identification of non-line-of-sight (NLOS) conditions. Three different data fusion algorithms are tested, based on three different time-of-arrival positioning algorithms, and experimental results show a localization accuracy of below 1.5 m for a 99th percentile.This work has been partially supported by FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2019 and Project UID/CTM/00264/2019 of 2C2T - Centro de Ciência e Tecnologia Têxtil, funded by National Founds through FCT/MCTES. The work of A. G. Ferreira and D. Fernandes was supported by the FCT under Grant SFRH/BD/91477/2012 and Grant SFRH/BD/92082/2012

    An adaptive weighting based on modified DOP for collaborative indoor positioning

    Get PDF
    Indoor localisation has always been a challenging problem due to poor Global Navigation Satellite System (GNSS) availability in such environments. While inertial measurement sensors have become popular solutions for indoor positioning, they suffer large drifts after initialisation. Collaborative positioning enhances positioning robustness by integrating multiple localisation information, especially relative ranging measurements between local users and transmitters. However, not all ranging measurements are useful throughout the whole positioning process and integrating too much data will increase the computation cost. To enable a more reliable positioning system, an adaptive collaborative positioning algorithm is proposed which selects units for the collaborative network and integrates ranging measurement to constrain inertial measurement errors. The algorithm selects the network adaptively from three perspectives: the network geometry, the network size and the accuracy level of the ranging measurements between the units. The collaborative relative constraint is then defined according to the selected network geometry and anticipated measurement quality. In the case of trials with real data, the positioning accuracy is improved by 60% by adjusting the range constraint adaptively according to the selected network situation, while also improving the system robustness

    Technologies and solutions for location-based services in smart cities: past, present, and future

    Get PDF
    Location-based services (LBS) in smart cities have drastically altered the way cities operate, giving a new dimension to the life of citizens. LBS rely on location of a device, where proximity estimation remains at its core. The applications of LBS range from social networking and marketing to vehicle-toeverything communications. In many of these applications, there is an increasing need and trend to learn the physical distance between nearby devices. This paper elaborates upon the current needs of proximity estimation in LBS and compares them against the available Localization and Proximity (LP) finding technologies (LP technologies in short). These technologies are compared for their accuracies and performance based on various different parameters, including latency, energy consumption, security, complexity, and throughput. Hereafter, a classification of these technologies, based on various different smart city applications, is presented. Finally, we discuss some emerging LP technologies that enable proximity estimation in LBS and present some future research areas

    Review of Ultra Wide Band (UWB) for Indoor Positioning with application to the elderly

    Get PDF
    The objective of this review is to analyze Ultra Wide Band (UWB) technology, as an option that allows developing new solutions in indoor positioning systems (IPS), mainly with a approach applied to the elderly. The methodology that has been applied corresponds to the definition of some basics concepts about UWB and some tests in the lab; the above to demonstrate the degree of accuracy that UWB offers compared to other technologies. The findings found and presented in this paper correspond to the identification of UWB as a technology with a high degree of accuracy for IPS; also, that there are other works related to the subject, with application in different areas, but specifically as an application for older people; regarding to the tests, these allowed to verify in the laboratory the operation and accuracy of UWB, for its possible application in IPS. The research described in this paper is the beginning of a implementation in a residence center, where accuracy in location and real-time response are important, in the future we hope make conclusive contributions of the implementations made

    Collaborative Indoor Positioning Systems: A Systematic Review

    Get PDF
    Research and development in Collaborative Indoor Positioning Systems (CIPSs) is growing steadily due to their potential to improve on the performance of their non-collaborative counterparts. In contrast to the outdoors scenario, where Global Navigation Satellite System is widely adopted, in (collaborative) indoor positioning systems a large variety of technologies, techniques, and methods is being used. Moreover, the diversity of evaluation procedures and scenarios hinders a direct comparison. This paper presents a systematic review that gives a general view of the current CIPSs. A total of 84 works, published between 2006 and 2020, have been identified. These articles were analyzed and classified according to the described system’s architecture, infrastructure, technologies, techniques, methods, and evaluation. The results indicate a growing interest in collaborative positioning, and the trend tend to be towards the use of distributed architectures and infrastructure-less systems. Moreover, the most used technologies to determine the collaborative positioning between users are wireless communication technologies (Wi-Fi, Ultra-WideBand, and Bluetooth). The predominant collaborative positioning techniques are Received Signal Strength Indication, Fingerprinting, and Time of Arrival/Flight, and the collaborative methods are particle filters, Belief Propagation, Extended Kalman Filter, and Least Squares. Simulations are used as the main evaluation procedure. On the basis of the analysis and results, several promising future research avenues and gaps in research were identified
    corecore