88 research outputs found

    A survey of scheduling problems with setup times or costs

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Serial-batch scheduling – the special case of laser-cutting machines

    Get PDF
    The dissertation deals with a problem in the field of short-term production planning, namely the scheduling of laser-cutting machines. The object of decision is the grouping of production orders (batching) and the sequencing of these order groups on one or more machines (scheduling). This problem is also known in the literature as "batch scheduling problem" and belongs to the class of combinatorial optimization problems due to the interdependencies between the batching and the scheduling decisions. The concepts and methods used are mainly from production planning, operations research and machine learning

    Heuristics for Unrelated Parallel Machine Scheduling with Secondary Resource Constraints

    Get PDF

    Heuristic Algorithm to Minimize Total Weighted Tardiness on the Unrelated Parallel Machine with Sequence Dependent Setup and Future Ready Time

    Get PDF
    This study presents a heuristic algorithm to minimize total weighted tardiness on unrelated parallel machines with sequence-dependent setup time and future ready time. We propose a new rule based on Apparent Tardiness Cost (ATC). The performance of the rule is evaluated on unrelated parallel machines. In order to solve a problem, we use a look-ahead method and a job-swap method. When a machine becomes idle, the heuristic compares the jobs on the machine and selects the one with the smallest total tardiness value to carry out a process. The propose heuristic is divided into three stages: The first stage employs the newly introduced dispatching rule, ATC with continuous setup and ready time for unrelated parallel machines (ATCSR_UP), along with a look-ahead heuristic to select the initial job for each machine. The second stage, consisting of several iterations, schedules the rest of the job on the machine. Each iteration starts by finding the job with the smallest tardiness. The ATCSR_Rm rule proposed by Lin and Hsieh (2013) concerns the unrelated-parallel-machine scheduling which this study examines, so we compare our ATC-based rule with their proposed rule. Although they study a separable setup time in their research, no other paper than Lin and Hsieh (2003) focus on unrelated parallel machine with future ready times. In their WSPT term, they consider the processing time for each job; our own rule considers processing time, setup time, job ready time, and machine time. We consider the setup time, job ready time, and machine time because — according to the continuous sequence-dependent setup rule — setup time should be included in processing time (Yue and Jang 2013). In addition, job ready time and machine time should also be included in the processing time. Adding setup time 〖(s〗_(i,j)), job ready time (r_j), and machine time (t_m) to the formula thus makes the formula more accurate. Lin and Hsieh (2013) use max(r_j,t_i+s_(i,j) ) for the slack term, and they compare the ready time with the sum of the machine available time 〖(t〗_i) and the setup time 〖(s〗_(i,j)). However, in our formula, we consider ready time, machine time, and current time. Current time (t) is used when a job might come at a future time when the machine in question is idle or has finished the job. The last term of the propose heuristic is the ready term, which uses both ready time (r_j) and machine time (t_m), because it needs to specify whether ready time (r_j) or machine time (t_m) goes first. If a job is ready to be processed but the machine is not ready, the job has to wait. We use ready time (r_j) and machine time (t_m) because this makes the formula more suitable for practical, real-world us
    • 

    corecore