5,590 research outputs found

    Formal and Informal Methods for Multi-Core Design Space Exploration

    Full text link
    We propose a tool-supported methodology for design-space exploration for embedded systems. It provides means to define high-level models of applications and multi-processor architectures and evaluate the performance of different deployment (mapping, scheduling) strategies while taking uncertainty into account. We argue that this extension of the scope of formal verification is important for the viability of the domain.Comment: In Proceedings QAPL 2014, arXiv:1406.156

    A Framework for Executable Systems Modeling

    Get PDF
    Systems Modeling Language (SysML), like its parent language, the Unified Modeling Language (UML), consists of a number of independently derived model languages (i.e. state charts, activity models etc.) which have been co-opted into a single modeling framework. This, together with the lack of an overarching meta-model that supports uniform semantics across the various diagram types, has resulted in a large unwieldy and informal language schema. Additionally, SysML does not offer a built in framework for managing time and the scheduling of time based events in a simulation. In response to these challenges, a number of auxiliary standards have been offered by the Object Management Group (OMG); most pertinent here are the foundational UML subset (fUML), Action language for fUML (Alf), and the UML profile for Modeling and Analysis of Real Time and Embedded Systems (MARTE). However, there remains a lack of a similar treatment of SysML tailored towards precise and formal modeling in the systems engineering domain. This work addresses this gap by offering refined semantics for SysML akin to fUML and MARTE standards, aimed at primarily supporting the development of time based simulation models typically applied for model verification and validation in systems engineering. The result of this work offers an Executable Systems Modeling Language (ESysML) and a prototype modeling tool that serves as an implementation test bed for the ESysML language. Additionally a model development process is offered to guide user appropriation of the provided framework for model building

    Incorporating Resource Safety Verification to Executable Model-based Development for Embedded Systems

    Full text link
    This paper formulates and illustrates the integration of resource safety verification into a design methodology for development of verified and robust real-time embedded systems. Resource-related concerns are not closely linked with current xUML model-based software development although they are critical for embedded systems. We describe how to integrate resource analysis techniques into the early phase of an xUML-based development cycle. Our hybrid framework for resource safety verification combines static resource analysis and runtime monitoring. A case study based on an embedded controller for satellite simulation, TableSat, illustrates the benefits obtained by incorporating resource verification into design and combining static analysis and runtime monitoring. 1

    Development Process for Multi-Disciplinary Embedded Control Systems

    Get PDF
    This report contains the progress report for the qualification exam for Industrial PhD student Sune Wolff. Initial work on describing a development process for multi-disciplinary systems using collaborative modelling and co-simulation is described
    • …
    corecore