3,152 research outputs found

    High order direct Arbitrary-Lagrangian-Eulerian schemes on moving Voronoi meshes with topology changes

    Full text link
    We present a new family of very high order accurate direct Arbitrary-Lagrangian-Eulerian (ALE) Finite Volume (FV) and Discontinuous Galerkin (DG) schemes for the solution of nonlinear hyperbolic PDE systems on moving 2D Voronoi meshes that are regenerated at each time step and which explicitly allow topology changes in time. The Voronoi tessellations are obtained from a set of generator points that move with the local fluid velocity. We employ an AREPO-type approach, which rapidly rebuilds a new high quality mesh rearranging the element shapes and neighbors in order to guarantee a robust mesh evolution even for vortex flows and very long simulation times. The old and new Voronoi elements associated to the same generator are connected to construct closed space--time control volumes, whose bottom and top faces may be polygons with a different number of sides. We also incorporate degenerate space--time sliver elements, needed to fill the space--time holes that arise because of topology changes. The final ALE FV-DG scheme is obtained by a redesign of the fully discrete direct ALE schemes of Boscheri and Dumbser, extended here to moving Voronoi meshes and space--time sliver elements. Our new numerical scheme is based on the integration over arbitrary shaped closed space--time control volumes combined with a fully-discrete space--time conservation formulation of the governing PDE system. In this way the discrete solution is conservative and satisfies the GCL by construction. Numerical convergence studies as well as a large set of benchmarks for hydrodynamics and magnetohydrodynamics (MHD) demonstrate the accuracy and robustness of the proposed method. Our numerical results clearly show that the new combination of very high order schemes with regenerated meshes with topology changes lead to substantial improvements compared to direct ALE methods on conforming meshes

    Investigation of finite-volume methods to capture shocks and turbulence spectra in compressible flows

    Get PDF
    The aim of the present paper is to provide a comparison between several finite-volume methods of different numerical accuracy: second-order Godunov method with PPM interpolation and high-order finite-volume WENO method. The results show that while on a smooth problem the high-order method perform better than the second-order one, when the solution contains a shock all the methods collapse to first-order accuracy. In the context of the decay of compressible homogeneous isotropic turbulence with shocklets, the actual overall order of accuracy of the methods reduces to second-order, despite the use of fifth-order reconstruction schemes at cell interfaces. Most important, results in terms of turbulent spectra are similar regardless of the numerical methods employed, except that the PPM method fails to provide an accurate representation in the high-frequency range of the spectra. It is found that this specific issue comes from the slope-limiting procedure and a novel hybrid PPM/WENO method is developed that has the ability to capture the turbulent spectra with the accuracy of a high-order method, but at the cost of the second-order Godunov method. Overall, it is shown that virtually the same physical solution can be obtained much faster by refining a simulation with the second-order method and carefully chosen numerical procedures, rather than running a coarse high-order simulation. Our results demonstrate the importance of evaluating the accuracy of a numerical method in terms of its actual spectral dissipation and dispersion properties on mixed smooth/shock cases, rather than by the theoretical formal order of convergence rate.Comment: This paper was previously composed of 2 parts, and this submission was part 1. It is now replaced by the combined pape

    HIGH ORDER SHOCK CAPTURING SCHEMES FOR HYPERBOLIC CONSERVATION LAWS AND THE APPLICATION IN OPEN CHANNEL FLOWS

    Get PDF
    Many applications in engineering practice can be described by thehyperbolic partial differential equations (PDEs). Numerical modeling of this typeof equations often involves large gradients or shocks, which makes it achallenging task for conventional numerical methods to accurately simulate suchsystems. Thus developing accurate and efficient shock capturing numericalschemes becomes important for the study of hyperbolic equations.In this dissertation, a detailed study of the numerical methods for linearand nonlinear unsteady hyperbolic equations was carried out. A new finitedifference shock capturing scheme of finite volume style was developed. Thisscheme is based on the high order Pad?? type compact central finite differencemethod with the weighted essentially non-oscillatory (WENO) reconstruction toeliminate non-physical oscillations near the discontinuities while maintain stablesolution in the smooth areas. The unconditionally stable semi-implicit Crank-Nicolson (CN) scheme is used for time integration.The theoretical development was conducted based on one-dimensionalhomogeneous scalar equation and system equations. Discussions were alsoextended to include source terms and to deal with problems of higher dimension.For the treatment of source terms, Strang splitting was used. For multidimensionalequations, the ?? -form Douglas-Gunn alternating direction implicit(ADI) method was employed. To compare the performance of the scheme withENO type interpolation, the current numerical framework was also applied usingENO reconstruction.The numerical schemes were tested on 1-D and 2-D benchmark problems,as well as published experimental results. The simulated results show thecapability of the proposed scheme to resolve discontinuities while maintainingaccuracy in smooth regions. Comparisons with the experimental results validatethe method for dam break problems. It is concluded that the proposed scheme isa useful tool for solving hyperbolic equations in general, and from engineeringapplication perspective it provides a new way of modeling open channel flows
    • …
    corecore