736 research outputs found

    Distributed Fault Detection in Formation of Multi-Agent Systems with Attack Impact Analysis

    Get PDF
    Autonomous Underwater Vehicles (AUVs) are capable of performing a variety of deepwater marine applications as in multiple mobile robots and cooperative robot reconnaissance. Due to the environment that AUVs operate in, fault detection and isolation as well as the formation control of AUVs are more challenging than other Multi-Agent Systems (MASs). In this thesis, two main challenges are tackled. We first investigate the formation control and fault accommodation algorithms for AUVs in presence of abnormal events such as faults and communication attacks in any of the team members. These undesirable events can prevent the entire team to achieve a safe, reliable, and efficient performance while executing underwater mission tasks. For instance, AUVs may face unexpected actuator/sensor faults and the communication between AUVs can be compromised, and consequently make the entire multi-agent system vulnerable to cyber-attacks. Moreover, a possible deception attack on network system may have a negative impact on the environment and more importantly the national security. Furthermore, there are certain requirements for speed, position or depth of the AUV team. For this reason, we propose a distributed fault detection scheme that is able to detect and isolate faults in AUVs while maintaining their formation under security constraints. The effects of faults and communication attacks with a control theoretical perspective will be studied. Another contribution of this thesis is to study a state estimation problem for a linear dynamical system in presence of a Bias Injection Attack (BIA). For this purpose, a Kalman Filter (KF) is used, where we show that the impact of an attack can be analyzed as the solution of a quadratically constrained problem for which the exact solution can be found efficiently. We also introduce a lower bound for the attack impact in terms of the number of compromised actuators and a combination of sensors and actuators. The theoretical findings are accompanied by simulation results and numerical can study examples

    An intelligent navigation system for an unmanned surface vehicle

    Get PDF
    Merged with duplicate record 10026.1/2768 on 27.03.2017 by CS (TIS)A multi-disciplinary research project has been carried out at the University of Plymouth to design and develop an Unmanned Surface Vehicle (USV) named ýpringer. The work presented herein relates to formulation of a robust, reliable, accurate and adaptable navigation system to enable opringei to undertake various environmental monitoring tasks. Synergistically, sensor mathematical modelling, fuzzy logic, Multi-Sensor Data Fusion (MSDF), Multi-Model Adaptive Estimation (MMAE), fault adaptive data acquisition and an user interface system are combined to enhance the robustness and fault tolerance of the onboard navigation system. This thesis not only provides a holistic framework but also a concourse of computational techniques in the design of a fault tolerant navigation system. One of the principle novelties of this research is the use of various fuzzy logic based MSDF algorithms to provide an adaptive heading angle under various fault situations for Springer. This algorithm adapts the process noise covariance matrix ( Q) and measurement noise covariance matrix (R) in order to address one of the disadvantages of Kalman filtering. This algorithm has been implemented in Spi-inger in real time and results demonstrate excellent robustness qualities. In addition to the fuzzy logic based MSDF, a unique MMAE algorithm has been proposed in order to provide an alternative approach to enhance the fault tolerance of the heading angles for Springer. To the author's knowledge, the work presented in this thesis suggests a novel way forward in the development of autonomous navigation system design and, therefore, it is considered that the work constitutes a contribution to knowledge in this area of study. Also, there are a number of ways in which the work presented in this thesis can be extended to many other challenging domains.DEVONPORT MANAGEMENT LTD, J&S MARINE LTD AND SOUTH WEST WATER PL

    Space Generic Open Avionics Architecture (SGOAA) reference model technical guide

    Get PDF
    This report presents a full description of the Space Generic Open Avionics Architecture (SGOAA). The SGOAA consists of a generic system architecture for the entities in spacecraft avionics, a generic processing architecture, and a six class model of interfaces in a hardware/software system. The purpose of the SGOAA is to provide an umbrella set of requirements for applying the generic architecture interface model to the design of specific avionics hardware/software systems. The SGOAA defines a generic set of system interface points to facilitate identification of critical interfaces and establishes the requirements for applying appropriate low level detailed implementation standards to those interface points. The generic core avionics system and processing architecture models provided herein are robustly tailorable to specific system applications and provide a platform upon which the interface model is to be applied

    Advancing automation and robotics technology for the Space Station Freedom and for the US economy

    Get PDF
    The progress made by levels 1, 2, and 3 of the Office of Space Station in developing and applying advanced automation and robotics technology is described. Emphasis is placed upon the Space Station Freedom Program responses to specific recommendations made in the Advanced Technology Advisory Committee (ATAC) progress report 10, the flight telerobotic servicer, and the Advanced Development Program. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for the Space Station Freedom

    Development of Fault Diagnosis and Fault Tolerant Control Algorithms with Application to Unmanned Systems

    Get PDF
    Unmanned vehicles have been increasingly employed in real life. They include unmanned air vehicles (UAVs), unmanned ground vehicles (UGVs), unmanned spacecrafts, and unmanned underwater vehicles (UUVs). Unmanned vehicles like any other autonomous systems need controllers to stabilize and control them. On the other hand unmanned systems might subject to different faults. Detecting a fault, finding the location and severity of it, are crucial for unmanned vehicles. Having enough information about a fault, it is needed to redesign controller based on post fault characteristics of the system. The obtained controlled system in this case can tolerate the fault and may have a better performance. The main focus of this thesis is to develop Fault Detection and Diagnosis (FDD) algorithms, and Fault Tolerant Controllers (FTC) to increase performance, safety and reliability of various missions using unmanned systems. In the field of unmanned ground vehicles, a new kinematical control method has been proposed for the trajectory tracking of nonholonomic Wheeled Mobile Robots (MWRs). It has been experimentally tested on an UGV, called Qbot. A stable leader-follower formation controller for time-varying formation configuration of multiple nonholonomic wheeled mobile robots has also been presented and is examined through computer simulation. In the field of unmanned aerial vehicles, Two-Stage Kalman Filter (TSKF), Adaptive Two-Stage Kalman Filter (ATSKF), and Interacting Multiple Model (IMM) filter were proposed for FDD of the quadrotor helicopter testbed in the presence of actuator faults. As for space missions, an FDD algorithm for the attitude control system of the Japan Canada Joint Collaboration Satellite - Formation Flying (JC2Sat-FF) mission has been developed. The FDD scheme was achieved using an IMM-based FDD algorithm. The efficiency of the FDD algorithm has been shown through simulation results in a nonlinear simulator of the JC2Sat-FF. A fault tolerant fuzzy gain-scheduled PID controller has also been designed for a quadrotor unmanned helicopter in the presence of actuator faults. The developed FDD algorithms and fuzzy controller were evaluated through experimental application to a quadrotor helicopter testbed called Qball-X4

    Fourth Annual Workshop on Space Operations Applications and Research (SOAR 90)

    Get PDF
    The proceedings of the SOAR workshop are presented. The technical areas included are as follows: Automation and Robotics; Environmental Interactions; Human Factors; Intelligent Systems; and Life Sciences. NASA and Air Force programmatic overviews and panel sessions were also held in each technical area

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space

    A Survey on Aerial Swarm Robotics

    Get PDF
    The use of aerial swarms to solve real-world problems has been increasing steadily, accompanied by falling prices and improving performance of communication, sensing, and processing hardware. The commoditization of hardware has reduced unit costs, thereby lowering the barriers to entry to the field of aerial swarm robotics. A key enabling technology for swarms is the family of algorithms that allow the individual members of the swarm to communicate and allocate tasks amongst themselves, plan their trajectories, and coordinate their flight in such a way that the overall objectives of the swarm are achieved efficiently. These algorithms, often organized in a hierarchical fashion, endow the swarm with autonomy at every level, and the role of a human operator can be reduced, in principle, to interactions at a higher level without direct intervention. This technology depends on the clever and innovative application of theoretical tools from control and estimation. This paper reviews the state of the art of these theoretical tools, specifically focusing on how they have been developed for, and applied to, aerial swarms. Aerial swarms differ from swarms of ground-based vehicles in two respects: they operate in a three-dimensional space and the dynamics of individual vehicles adds an extra layer of complexity. We review dynamic modeling and conditions for stability and controllability that are essential in order to achieve cooperative flight and distributed sensing. The main sections of this paper focus on major results covering trajectory generation, task allocation, adversarial control, distributed sensing, monitoring, and mapping. Wherever possible, we indicate how the physics and subsystem technologies of aerial robots are brought to bear on these individual areas

    Cooperative Control of Multiple Wheeled Mobile Robots: Normal and Faulty Situations

    Get PDF
    Recently, cooperative control of multiple unmanned vehicles has attracted a great deal of attention from scientific, industrial, and military aspects. Groups of unmanned ground, aerial, or marine vehicles working cooperatively lead to many advantages in a variety of applications such as: surveillance, search and exploration, cooperative reconnaissance, environmental monitoring, and cooperative manipulation, respectively. During mission execution, unmanned systems should travel autonomously between different locations, maintain a pre-defined formation shape, avoid collisions of obstacles and also other team members, and accommodate occurred faults and mitigate their negative effect on mission execution. The main objectives of this dissertation are to design novel algorithms for single wheeled mobile robots (WMRs) trajectory tracking, cooperative control and obstacle avoidance of WMRs in fault-free situations. In addition, novel algorithms are developed for fault-tolerant cooperative control (FTCC) with integration of fault detection and diagnosis (FDD) scheme. In normal/fault-free cases, an integrated approach combining input-output feedback linearization and distributed model predictive control (MPC) techniques is designed and implemented on a team of WMRs to accomplish the trajectory tracking as well as the cooperative task. An obstacle avoidance algorithm based on mechanical impedance principle is proposed to avoid potential collisions of surrounding obstacles. Moreover, the proposed control algorithm is implemented to a team of WMRs for pairing with a team of unmanned aerial vehicles (UAVs) for forest monitoring and fire detection applications. When actuator faults occur in one of the robots, two cases are explicitly considered: i) if the faulty robot cannot complete its assigned task due to a severe fault, then the faulty robot has to get out from the formation mission, and an FTCC strategy is designed such that the tasks of the WMRs team are re-assigned to the remaining healthy robots to complete the mission with graceful performance degradation. Two methods are used to investigate this case: the Graph Theory, and formulating the FTCC problem as an optimal assignment problem; and ii) if the faulty robot can continue the mission with degraded performance, then the other team members reconfigure the controllers considering the capability of the faulty robot. Thus, the FTCC strategy is designed to re-coordinate the motion of each robot in the team. Within the proposed scheme, an FDD unit using a two-stage Kalman filter (TSKF) to detect and diagnose actuator faults is presented. In case of using any other nonlinear controller in fault-free case rather than MPC, and in case of severe fault occurrence, another FTCC strategy is presented. First, the new reconfiguration is formulated by an optimal assignment problem where each healthy WMR is assigned to a unique place. Second, the new formation can be reconfigured, while the objective is to minimize the time to achieve the new formation within the constraints of the WMRs' dynamics and collision avoidance. A hybrid approach of control parametrization and time discretization (CPTD) and particle swarm optimization (PSO) is proposed to address this problem. Since PSO cannot solve the continuous control inputs, CPTD is adopted to provide an approximate piecewise linearization of the control inputs. Therefore, PSO can be adopted to find the global optimum solution. In all cases, formation operation of the robot team is based on a leader-follower approach, whilst the control algorithm is implemented in a distributed manner. The results of the numerical simulations and real experiments demonstrate the effectiveness of the proposed algorithms in various scenarios

    Cooperative Control of Multiple Wheeled Mobile Robots: Normal and Faulty Situations

    Get PDF
    Recently, cooperative control of multiple unmanned vehicles has attracted a great deal of attention from scientific, industrial, and military aspects. Groups of unmanned ground, aerial, or marine vehicles working cooperatively lead to many advantages in a variety of applications such as: surveillance, search and exploration, cooperative reconnaissance, environmental monitoring, and cooperative manipulation, respectively. During mission execution, unmanned systems should travel autonomously between different locations, maintain a pre-defined formation shape, avoid collisions of obstacles and also other team members, and accommodate occurred faults and mitigate their negative effect on mission execution. The main objectives of this dissertation are to design novel algorithms for single wheeled mobile robots (WMRs) trajectory tracking, cooperative control and obstacle avoidance of WMRs in fault-free situations. In addition, novel algorithms are developed for fault-tolerant cooperative control (FTCC) with integration of fault detection and diagnosis (FDD) scheme. In normal/fault-free cases, an integrated approach combining input-output feedback linearization and distributed model predictive control (MPC) techniques is designed and implemented on a team of WMRs to accomplish the trajectory tracking as well as the cooperative task. An obstacle avoidance algorithm based on mechanical impedance principle is proposed to avoid potential collisions of surrounding obstacles. Moreover, the proposed control algorithm is implemented to a team of WMRs for pairing with a team of unmanned aerial vehicles (UAVs) for forest monitoring and fire detection applications. When actuator faults occur in one of the robots, two cases are explicitly considered: i) if the faulty robot cannot complete its assigned task due to a severe fault, then the faulty robot has to get out from the formation mission, and an FTCC strategy is designed such that the tasks of the WMRs team are re-assigned to the remaining healthy robots to complete the mission with graceful performance degradation. Two methods are used to investigate this case: the Graph Theory, and formulating the FTCC problem as an optimal assignment problem; and ii) if the faulty robot can continue the mission with degraded performance, then the other team members reconfigure the controllers considering the capability of the faulty robot. Thus, the FTCC strategy is designed to re-coordinate the motion of each robot in the team. Within the proposed scheme, an FDD unit using a two-stage Kalman filter (TSKF) to detect and diagnose actuator faults is presented. In case of using any other nonlinear controller in fault-free case rather than MPC, and in case of severe fault occurrence, another FTCC strategy is presented. First, the new reconfiguration is formulated by an optimal assignment problem where each healthy WMR is assigned to a unique place. Second, the new formation can be reconfigured, while the objective is to minimize the time to achieve the new formation within the constraints of the WMRs' dynamics and collision avoidance. A hybrid approach of control parametrization and time discretization (CPTD) and particle swarm optimization (PSO) is proposed to address this problem. Since PSO cannot solve the continuous control inputs, CPTD is adopted to provide an approximate piecewise linearization of the control inputs. Therefore, PSO can be adopted to find the global optimum solution. In all cases, formation operation of the robot team is based on a leader-follower approach, whilst the control algorithm is implemented in a distributed manner. The results of the numerical simulations and real experiments demonstrate the effectiveness of the proposed algorithms in various scenarios
    corecore