3,055 research outputs found

    Machine Learning for Design Optimization of Electromagnetic Devices: Recent Developments and Future Directions

    Full text link
    This paper reviews the recent developments of design optimization methods for electromagnetic devices, with a focus on machine learning methods. First, the recent advances in multi-objective, multidisciplinary, multilevel, topology, fuzzy, and robust design optimization of electromagnetic devices are overviewed. Second, a review is presented to the performance prediction and design optimization of electromagnetic devices based on the machine learning algorithms, including artificial neural network, support vector machine, extreme learning machine, random forest, and deep learning. Last, to meet modern requirements of high manufacturing/production quality and lifetime reliability, several promising topics, including the application of cloud services and digital twin, are discussed as future directions for design optimization of electromagnetic devices

    Multi-Criteria Performance Evaluation and Control in Power and Energy Systems

    Get PDF
    The role of intuition and human preferences are often overlooked in autonomous control of power and energy systems. However, the growing operational diversity of many systems such as microgrids, electric/hybrid-electric vehicles and maritime vessels has created a need for more flexible control and optimization methods. In order to develop such flexible control methods, the role of human decision makers and their desired performance metrics must be studied in power and energy systems. This dissertation investigates the concept of multi-criteria decision making as a gateway to integrate human decision makers and their opinions into complex mathematical control laws. There are two major steps this research takes to algorithmically integrate human preferences into control environments: MetaMetric (MM) performance benchmark: considering the interrelations of mathematical and psychological convergence, and the potential conflict of opinion between the control designer and end-user, a novel holistic performance benchmark, denoted as MM, is developed to evaluate control performance in real-time. MM uses sensor measurements and implicit human opinions to construct a unique criterion that benchmarks the system\u27s performance characteristics. MM decision support system (DSS): the concept of MM is incorporated into multi-objective evolutionary optimization algorithms as their DSS. The DSS\u27s role is to guide and sort the optimization decisions such that they reflect the best outcome desired by the human decision-maker and mathematical considerations. A diverse set of case studies including a ship power system, a terrestrial power system, and a vehicular traction system are used to validate the approaches proposed in this work. Additionally, the MM DSS is designed in a modular way such that it is not specific to any underlying evolutionary optimization algorithm

    Particle Swarm Optimization: Basic Concepts, Variants and Applications in Power Systems

    Get PDF
    Many areas in power systems require solving one or more nonlinear optimization problems. While analytical methods might suffer from slow convergence and the curse of dimensionality, heuristics-based swarm intelligence can be an efficient alternative. Particle swarm optimization (PSO), part of the swarm intelligence family, is known to effectively solve large-scale nonlinear optimization problems. This paper presents a detailed overview of the basic concepts of PSO and its variants. Also, it provides a comprehensive survey on the power system applications that have benefited from the powerful nature of PSO as an optimization technique. For each application, technical details that are required for applying PSO, such as its type, particle formulation (solution representation), and the most efficient fitness functions are also discussed

    Modeling and Controlling a Hybrid Multi-Agent based Microgrid in Presence of Different Physical and Cyber Components

    Get PDF
    This dissertation starts with modeling of two different and important parts of the distribution power systems, i.e. distribution line and photovoltaic (PV) systems. Firstly, it studies different approximation methods and develops a new approach for simplification of Carson\u27s equations to model distribution lines for unbalanced power flow and short circuit analysis. The results of applying the proposed method on a three-phase unbalanced distribution system are compared with different existing methods as well as actual impedance values obtained from numerical integration method. Then steady state modeling and optimal placing of multiple PV system are investigated in order to reduce the total loss in the system. The results show the effectiveness of the proposed method in minimizing the total loss in a distribution power system.;The dissertation starts the discussion about microgrid modeling and control by implementing a novel frequency control approach in a microgrid. This study has been carried out step by step by modeling different part of the power system and proposing different algorithms. Firstly, the application of Renewable Energy Sources (RES) accompanied with Energy Storage Systems (ESS) in a hybrid system is studied in the presence of Distributed Generation (DG) resources in Load Frequency Control (LFC) problem of microgrid power system with significant penetration of wind speed disturbances. The next step is to investigate the effect of PHEVs in modelling and controlling the microgid. Therefore, system with different penetrations of PHEVs and different stochastic behaviors of PHEVs is modeled. Different kinds of control approaches, including PI control as conventional method and proposed optimal LQR and dynamic programming methods, have been utilized and the results have been compared with each other. Then, Multi Agent System (MAS) is utilized as a control solution which contributes the cyber aspects of microgrid system. The modeled microgrid along with dynamic models of different components is implemented in a centralized multi-agent based structure. The robustness of the proposed controller has been tested against different frequency changes including cyber attack implications with different timing and severity. New attack detection through learning method is also proposed and tested. The results show improvement in frequency response of the microgrid system using the proposed control method and defense strategy against cyber attacks.;Finally, a new multi-agent based control method along with an advanced secondary voltage and frequency control using Particle Swarm Optimization (PSO) and Adaptive Dynamic Programming (ADP) is proposed and tested in the modeled microgrid considering nonlinear heterogeneous dynamic models of DGs. The results are shown and compared with conventional control approaches and different multi-agent structures. It is observed that the results are improved by using the new multi-agent structure and secondary control method.;In summary, contributions of this dissertation center in three main topics. Firstly, new accurate methods for modeling the distribution line impedance and PV system is developed. Then advanced control and defense strategy method for frequency regulation against cyber intrusions and load changes in a microgrid is proposed. Finally, a new hierarchical multi-agent based control algorithm is designed for secondary voltage and frequency control of the microgrid. (Abstract shortened by ProQuest.)

    Efficient design optimization of high-performance MEMS based on a surrogate-assisted self-adaptive differential evolution

    Get PDF
    High-performance microelectromechanical systems (MEMS) are playing a critical role in modern engineering systems. Due to computationally expensive numerical analysis and stringent design specifications nowadays, both the optimization efficiency and quality of design solutions become challenges for available MEMS shape optimization methods. In this paper, a new method, called self-adaptive surrogate model-assisted differential evolution for MEMS optimization (ASDEMO), is presented to address these challenges. The main innovation of ASDEMO is a hybrid differential evolution mutation strategy combination and its self-adaptive adoption mechanism, which are proposed for online surrogate model-assisted MEMS optimization. The performance of ASDEMO is demonstrated by a high-performance electro-thermo-elastic micro-actuator, a high-performance corrugated membrane microactuator, and a highly multimodal mathematical benchmark problem. Comparisons with state-of-the-art methods verify the advantages of ASDEMO in terms of efficiency and optimization ability

    Shadow Price Guided Genetic Algorithms

    Get PDF
    The Genetic Algorithm (GA) is a popular global search algorithm. Although it has been used successfully in many fields, there are still performance challenges that prevent GA’s further success. The performance challenges include: difficult to reach optimal solutions for complex problems and take a very long time to solve difficult problems. This dissertation is to research new ways to improve GA’s performance on solution quality and convergence speed. The main focus is to present the concept of shadow price and propose a two-measurement GA. The new algorithm uses the fitness value to measure solutions and shadow price to evaluate components. New shadow price Guided operators are used to achieve good measurable evolutions. Simulation results have shown that the new shadow price Guided genetic algorithm (SGA) is effective in terms of performance and efficient in terms of speed

    Electric Power System Operations with a Variable Series Reactor

    Get PDF
    Series FACTS devices, such as a Variable Series Reactor (VSR), have the ability to continuously regulate the transmission line reactance so as to control power ow. This research work evaluates the benefits brought by VSRs in different aspects of power system and develops efficient planning models and algorithms to provide optimal investment plan for the VSRs. First, an optimization approach capable of finding both optimal locations and settings of VSRs under a specific operating condition is developed. The tool implements a full ac model as well as detailed models for different power system components. Second, an optimization tool which can optimally allocate VSRs to improve the load margin in a transmission network considering a multi-scenario framework including base case and some critical contingencies is proposed. Starting from a mixed integer nonlinear programming (MINLP) model, a reformulation technique is leveraged to transform the MINLP model into a mixed integer linear programming (MILP) model so that it is computationally tractable for large scale power systems. Detailed numerical simulations on the practical Northwest US power network demonstrate the proposed technique and the capability of VSRs. Third, the VSR is introduced in the Transmission Expansion Planning (TEP) problem. A security constrained multi-stage TEP with the VSR is formulated as an MILP model. To reduce the computational burden for a practical large scale system, a decomposition approach is proposed. Simulation results demonstrate the effectiveness of the proposed approach and show that the appropriately allocated VSRs allow reduced planning costs. Fourth, in order to investigate the economic benefits brought by VSR in contingencies, a planning model to allocate VSR considering different operating conditions and the N - 1 contingencies is formulated. We consider a single target year planning. Three distinct load patterns which represent peak, normal and low load level are selected to accommodate the yearly load profile. The transmission contingencies can occur in any of the three load conditions. A two phase Benders decomposition is proposed to solved the large scale MILP model. Simulation results on the IEEE-118 bus system and the practical Polish system establish the efficient performance of the proposed algorithm

    An Adaptive Modular Redundancy Technique to Self-regulate Availability, Area, and Energy Consumption in Mission-critical Applications

    Get PDF
    As reconfigurable devices\u27 capacities and the complexity of applications that use them increase, the need for self-reliance of deployed systems becomes increasingly prominent. A Sustainable Modular Adaptive Redundancy Technique (SMART) composed of a dual-layered organic system is proposed, analyzed, implemented, and experimentally evaluated. SMART relies upon a variety of self-regulating properties to control availability, energy consumption, and area used, in dynamically-changing environments that require high degree of adaptation. The hardware layer is implemented on a Xilinx Virtex-4 Field Programmable Gate Array (FPGA) to provide self-repair using a novel approach called a Reconfigurable Adaptive Redundancy System (RARS). The software layer supervises the organic activities within the FPGA and extends the self-healing capabilities through application-independent, intrinsic, evolutionary repair techniques to leverage the benefits of dynamic Partial Reconfiguration (PR). A SMART prototype is evaluated using a Sobel edge detection application. This prototype is shown to provide sustainability for stressful occurrences of transient and permanent fault injection procedures while still reducing energy consumption and area requirements. An Organic Genetic Algorithm (OGA) technique is shown capable of consistently repairing hard faults while maintaining correct edge detector outputs, by exploiting spatial redundancy in the reconfigurable hardware. A Monte Carlo driven Continuous Markov Time Chains (CTMC) simulation is conducted to compare SMART\u27s availability to industry-standard Triple Modular Technique (TMR) techniques. Based on nine use cases, parameterized with realistic fault and repair rates acquired from publically available sources, the results indicate that availability is significantly enhanced by the adoption of fast repair techniques targeting aging-related hard-faults. Under harsh environments, SMART is shown to improve system availability from 36.02% with lengthy repair techniques to 98.84% with fast ones. This value increases to five nines (99.9998%) under relatively more favorable conditions. Lastly, SMART is compared to twenty eight standard TMR benchmarks that are generated by the widely-accepted BL-TMR tools. Results show that in seven out of nine use cases, SMART is the recommended technique, with power savings ranging from 22% to 29%, and area savings ranging from 17% to 24%, while still maintaining the same level of availability

    Design Space Exploration and Resource Management of Multi/Many-Core Systems

    Get PDF
    The increasing demand of processing a higher number of applications and related data on computing platforms has resulted in reliance on multi-/many-core chips as they facilitate parallel processing. However, there is a desire for these platforms to be energy-efficient and reliable, and they need to perform secure computations for the interest of the whole community. This book provides perspectives on the aforementioned aspects from leading researchers in terms of state-of-the-art contributions and upcoming trends

    Particle Swarm Optimization

    Get PDF
    Particle swarm optimization (PSO) is a population based stochastic optimization technique influenced by the social behavior of bird flocking or fish schooling.PSO shares many similarities with evolutionary computation techniques such as Genetic Algorithms (GA). The system is initialized with a population of random solutions and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by following the current optimum particles. This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field
    corecore