2,660 research outputs found

    A Community-based Cloud Computing Caching Service

    Get PDF
    Caching has become an important technology in the development of cloud computing-based high-performance web services. Caches reduce the request to response latency experienced by users, and reduce workload on backend databases. They need a high cache-hit rate to be fit for purpose, and this rate is dependent on the cache management policy used. Existing cache management policies are not designed to prevent cache pollution or cache monopoly problems, which impacts negatively on the cache-hit rate. This paper proposes a community-based caching approach (CC) to address these two problems. CC was evaluated for performance against thirteen commercially available cache management policies, and results demonstrate that the cache-hit rate achieved by CC was between 0.7% and 55% better than the alternate cache management policies

    Improving Reachability and Navigability in Recommender Systems

    Full text link
    In this paper, we investigate recommender systems from a network perspective and investigate recommendation networks, where nodes are items (e.g., movies) and edges are constructed from top-N recommendations (e.g., related movies). In particular, we focus on evaluating the reachability and navigability of recommendation networks and investigate the following questions: (i) How well do recommendation networks support navigation and exploratory search? (ii) What is the influence of parameters, in particular different recommendation algorithms and the number of recommendations shown, on reachability and navigability? and (iii) How can reachability and navigability be improved in these networks? We tackle these questions by first evaluating the reachability of recommendation networks by investigating their structural properties. Second, we evaluate navigability by simulating three different models of information seeking scenarios. We find that with standard algorithms, recommender systems are not well suited to navigation and exploration and propose methods to modify recommendations to improve this. Our work extends from one-click-based evaluations of recommender systems towards multi-click analysis (i.e., sequences of dependent clicks) and presents a general, comprehensive approach to evaluating navigability of arbitrary recommendation networks

    A hybrid of bacterial foraging and differential evolution -based distance of sequences

    Get PDF
    AbstractIn a previous work we presented a new distance that we called the sigma gram distance, which is used to compute the similarity between two sequences. This distance is based on parameters which we computed through an optimization process that used the artificial bee colony; a bio-inspired optimization algorithm. In this paper we show how a hybrid of two optimization algorithms; bacterial foraging and differential evolution, when used to compute the parameters of the sigma gram distance, can yield better results than those obtained by applying artificial bee colony. This superiority in performance is validated through experiments on the same data sets to which artificial bee colony, on the same optimization problem, was tested

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes
    corecore