28,336 research outputs found

    A deep reinforcement learning based homeostatic system for unmanned position control

    Get PDF
    Deep Reinforcement Learning (DRL) has been proven to be capable of designing an optimal control theory by minimising the error in dynamic systems. However, in many of the real-world operations, the exact behaviour of the environment is unknown. In such environments, random changes cause the system to reach different states for the same action. Hence, application of DRL for unpredictable environments is difficult as the states of the world cannot be known for non-stationary transition and reward functions. In this paper, a mechanism to encapsulate the randomness of the environment is suggested using a novel bio-inspired homeostatic approach based on a hybrid of Receptor Density Algorithm (an artificial immune system based anomaly detection application) and a Plastic Spiking Neuronal model. DRL is then introduced to run in conjunction with the above hybrid model. The system is tested on a vehicle to autonomously re-position in an unpredictable environment. Our results show that the DRL based process control raised the accuracy of the hybrid model by 32%.N/

    Bat Algorithm: Literature Review and Applications

    Full text link
    Bat algorithm (BA) is a bio-inspired algorithm developed by Yang in 2010 and BA has been found to be very efficient. As a result, the literature has expanded significantly in the last 3 years. This paper provides a timely review of the bat algorithm and its new variants. A wide range of diverse applications and case studies are also reviewed and summarized briefly here. Further research topics are also discussed.Comment: 10 page

    Cycle time minimization in production line using robust hybrid optimization algorithm

    Get PDF
    Bio-inspired algorithms that have been introduced by mimicking the biological phenomenon of nature have widely implemented to cater various real-world problems. As example, memetic algorithm, EGSJAABC3 is applied for economic environmental dispatch (EED) optimization, Hybrid Pareto Grey Wolf Optimization to minimize emission of noise and carbon in U-shaped robotic assembly line and Polar Bear Optimization to optimize heat production. The results obtained from their research have clearly portrayed the robustness of bio-inspired algorithms to cater complex problems. Assembly line, which is normally the last step of production that involves final assembly of the products. An assembly line generally consists of several workstations placed in sequential order. Each of the workstation is in charge to complete certain specific jobs. Hence, it is a must to make the best use of the efficiency of the assembly line. Cycle time minimization is part of the assembly line balancing problem due to its uncertainty that dependent on the number of manpower, material preparation and machine capacity. Cycle time basically means time needed to process a product using a specific task in a production line. This project proposes the application of new hybrid optimization algorithm named JAABC5-RRO to minimize cycle time to produce a new audio product on a production line in a production company

    Artificial intelligence in the cyber domain: Offense and defense

    Get PDF
    Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41

    Self-organization of Nodes using Bio-Inspired Techniques for Achieving Small World Properties

    Full text link
    In an autonomous wireless sensor network, self-organization of the nodes is essential to achieve network wide characteristics. We believe that connectivity in wireless autonomous networks can be increased and overall average path length can be reduced by using beamforming and bio-inspired algorithms. Recent works on the use of beamforming in wireless networks mostly assume the knowledge of the network in aggregation to either heterogeneous or hybrid deployment. We propose that without the global knowledge or the introduction of any special feature, the average path length can be reduced with the help of inspirations from the nature and simple interactions between neighboring nodes. Our algorithm also reduces the number of disconnected components within the network. Our results show that reduction in the average path length and the number of disconnected components can be achieved using very simple local rules and without the full network knowledge.Comment: Accepted to Joint workshop on complex networks and pervasive group communication (CCNet/PerGroup), in conjunction with IEEE Globecom 201
    corecore