5,367 research outputs found

    Computational Hybrid Systems for Identifying Prognostic Gene Markers of Lung Cancer

    Get PDF
    Lung cancer is the most fatal cancer around the world. Current lung cancer prognosis and treatment is based on tumor stage population statistics and could not reliably assess the risk for developing recurrence in individual patients. Biomarkers enable treatment options to be tailored to individual patients based on their tumor molecular characteristics. To date, there is no clinically applied molecular prognostic model for lung cancer. Statistics and feature selection methods identify gene candidates by ranking the association between gene expression and disease outcome, but do not account for the interactions among genes. Computational network methods could model interactions, but have not been used for gene selection due to computational inefficiency. Moreover, the curse of dimensionality in human genome data imposes more computational challenges to these methods.;We proposed two hybrid systems for the identification of prognostic gene signatures for lung cancer using gene expressions measured with DNA microarray. The first hybrid system combined t-tests, Statistical Analysis of Microarray (SAM), and Relief feature selections in multiple gene filtering layers. This combinatorial system identified a 12-gene signature with better prognostic performance than published signatures in treatment selection for stage I and II patients (log-rank P\u3c0.04, Kaplan-Meier analyses). The 12-gene signature is a more significant prognostic factor (hazard ratio=4.19, 95% CI: [2.08, 8.46], P\u3c0.00006) than other clinical covariates. The signature genes were found to be involved in tumorigenesis in functional pathway analyses.;The second proposed system employed a novel computational network model, i.e., implication networks based on prediction logic. This network-based system utilizes gene coexpression networks and concurrent coregulation with signaling pathways for biomarker identification. The first application of the system modeled disease-mediated genome-wide coexpression networks. The entire genomic space were extensively explored and 21 gene signatures were discovered with better prognostic performance than all published signatures in stage I patients not receiving chemotherapy (hazard ratio\u3e1, CPE\u3e0.5, P \u3c 0.05). These signatures could potentially be used for selecting patients for adjuvant chemotherapy. The second application of the system modeled the smoking-mediated coexpression networks and identified a smoking-associated 7-gene signature. The 7-gene signature generated significant prognostication specific to smoking lung cancer patients (log-rank P\u3c0.05, Kaplan-Meier analyses), with implications in diagnostic screening of lung cancer risk in smokers (overall accuracy=74%, P\u3c0.006). The coexpression patterns derived from the implication networks in both applications were successfully validated with molecular interactions reported in the literature (FDR\u3c0.1).;Our studies demonstrated that hybrid systems with multiple gene selection layers outperform traditional methods. Moreover, implication networks could efficiently model genome-scale disease-mediated coexpression networks and crosstalk with signaling pathways, leading to the identification of clinically important gene signatures

    Gene prioritization in Type 2 Diabetes using domain interactions and network analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Identification of disease genes for Type 2 Diabetes (T2D) by traditional methods has yielded limited success. Based on our previous observation that T2D may result from disturbed protein-protein interactions affected through disrupting modular domain interactions, here we have designed an approach to rank the candidates in the T2D linked genomic regions as plausible disease genes.</p> <p>Results</p> <p>Our approach integrates Weight value (Wv) method followed by prioritization using clustering coefficients derived from domain interaction network. Wv for each candidate is calculated based on the assumption that disease genes might be functionally related, mainly facilitated by interactions among domains of the interacting proteins. The benchmarking using a test dataset comprising of both known T2D genes and non-T2D genes revealed that Wv method had a sensitivity and specificity of 0.74 and 0.96 respectively with 9 fold enrichment. The candidate genes having a Wv > 0.5 were called High Weight Elements (HWEs). Further, we ranked HWEs by using the network property-the clustering coefficient (C<sub>i</sub>). Each HWE with a C<sub>i </sub>< 0.015 was prioritized as plausible disease candidates (HWEc) as previous studies indicate that disease genes tend to avoid dense clustering (with an average C<sub>i </sub>of 0.015). This method further prioritized the identified disease genes with a sensitivity of 0.32 and a specificity of 0.98 and enriched the candidate list by 6.8 fold. Thus, from the dataset of 4052 positional candidates the method ranked 435 to be most likely disease candidates. The gene ontology sharing for the candidates showed higher representation of metabolic and signaling processes. The approach also captured genes with unknown functions which were characterized by network motif analysis.</p> <p>Conclusions</p> <p>Prioritization of positional candidates is essential for cost-effective and an expedited discovery of disease genes. Here, we demonstrate a novel approach for disease candidate prioritization from numerous loci linked to T2D.</p

    Interpretability-oriented data-driven modelling of bladder cancer via computational intelligence

    Get PDF

    Systems approaches and algorithms for discovery of combinatorial therapies

    Full text link
    Effective therapy of complex diseases requires control of highly non-linear complex networks that remain incompletely characterized. In particular, drug intervention can be seen as control of signaling in cellular networks. Identification of control parameters presents an extreme challenge due to the combinatorial explosion of control possibilities in combination therapy and to the incomplete knowledge of the systems biology of cells. In this review paper we describe the main current and proposed approaches to the design of combinatorial therapies, including the empirical methods used now by clinicians and alternative approaches suggested recently by several authors. New approaches for designing combinations arising from systems biology are described. We discuss in special detail the design of algorithms that identify optimal control parameters in cellular networks based on a quantitative characterization of control landscapes, maximizing utilization of incomplete knowledge of the state and structure of intracellular networks. The use of new technology for high-throughput measurements is key to these new approaches to combination therapy and essential for the characterization of control landscapes and implementation of the algorithms. Combinatorial optimization in medical therapy is also compared with the combinatorial optimization of engineering and materials science and similarities and differences are delineated.Comment: 25 page

    From Correlation to Causality: Does Network Information improve Cancer Outcome Prediction?

    Get PDF
    Motivation: Disease progression in cancer can vary substantially between patients. Yet, patients often receive the same treatment. Recently, there has been much work on predicting disease progression and patient outcome variables from gene expression in order to personalize treatment options. A widely used approach is high-throughput experiments that aim to explore predictive signature genes which would provide identification of clinical outcome of diseases. Microarray data analysis helps to reveal underlying biological mechanisms of tumor progression, metastasis, and drug-resistance in cancer studies. Despite first diagnostic kits in the market, there are open problems such as the choice of random gene signatures or noisy expression data. The experimental or computational noise in data and limited tissue samples collected from patients might furthermore reduce the predictive power and biological interpretability of such signature genes. Nevertheless, signature genes predicted by different studies generally represent poor similarity; even for the same type of cancer. Integration of network information with gene expression data could provide more efficient signatures for outcome prediction in cancer studies. One approach to deal with these problems employs gene-gene relationships and ranks genes using the random surfer model of Google's PageRank algorithm. Unfortunately, the majority of published network-based approaches solely tested their methods on a small amount of datasets, questioning the general applicability of network-based methods for outcome prediction. Methods: In this thesis, I provide a comprehensive and systematically evaluation of a network-based outcome prediction approach -- NetRank - a PageRank derivative -- applied on several types of gene expression cancer data and four different types of networks. The algorithm identifies a signature gene set for a specific cancer type by incorporating gene network information with given expression data. To assess the performance of NetRank, I created a benchmark dataset collection comprising 25 cancer outcome prediction datasets from literature and one in-house dataset. Results: NetRank performs significantly better than classical methods such as foldchange or t-test as it improves the prediction performance in average for 7%. Besides, we are approaching the accuracy level of the authors' signatures by applying a relatively unbiased but fully automated process for biomarker discovery. Despite an order of magnitude difference in network size, a regulatory, a protein-protein interaction and two predicted networks perform equally well. Signatures as published by the authors and the signatures generated with classical methods do not overlap -- not even for the same cancer type -- whereas the network-based signatures strongly overlap. I analyze and discuss these overlapping genes in terms of the Hallmarks of cancer and in particular single out six transcription factors and seven proteins and discuss their specific role in cancer progression. Furthermore several tests are conducted for the identification of a Universal Cancer Signature. No Universal Cancer Signature could be identified so far, but a cancer-specific combination of general master regulators with specific cancer genes could be discovered that achieves the best results for all cancer types. As NetRank offers a great value for cancer outcome prediction, first steps for a secure usage of NetRank in a public cloud are described. Conclusion: Experimental evaluation of network-based methods on a gene expression benchmark dataset suggests that these methods are especially suited for outcome prediction as they overcome the problems of random gene signatures and noisy expression data. Through the combination of network information with gene expression data, network-based methods identify highly similar signatures over all cancer types, in contrast to classical methods that fail to identify highly common gene sets across the same cancer types. In general allows the integration of additional information in gene expression analysis the identification of more reliable, accurate and reproducible biomarkers and provides a deeper understanding of processes occurring in cancer development and progression.:1 Definition of Open Problems 2 Introduction 2.1 Problems in cancer outcome prediction 2.2 Network-based cancer outcome prediction 2.3 Universal Cancer Signature 3 Methods 3.1 NetRank algorithm 3.2 Preprocessing and filtering of the microarray data 3.3 Accuracy 3.4 Signature similarity 3.5 Classical approaches 3.6 Random signatures 3.7 Networks 3.8 Direct neighbor method 3.9 Dataset extraction 4 Performance of NetRank 4.1 Benchmark dataset for evaluation 4.2 The influence of NetRank parameters 4.3 Evaluation of NetRank 4.4 General findings 4.5 Computational complexity of NetRank 4.6 Discussion 5 Universal Cancer Signature 5.1 Signature overlap – a sign for Universal Cancer Signature 5.2 NetRank genes are highly connected and confirmed in literature 5.3 Hallmarks of Cancer 5.4 Testing possible Universal Cancer Signatures 5.5 Conclusion 6 Cloud-based Biomarker Discovery 6.1 Introduction to secure Cloud computing 6.2 Cancer outcome prediction 6.3 Security analysis 6.4 Conclusion 7 Contributions and Conclusion

    Feature selection with interactions in logistic regression models using multivariate synergies for a GWAS application

    Get PDF
    Abstract Background Genotype-phenotype association has been one of the long-standing problems in bioinformatics. Identifying both the marginal and epistatic effects among genetic markers, such as Single Nucleotide Polymorphisms (SNPs), has been extensively integrated in Genome-Wide Association Studies (GWAS) to help derive “causal” genetic risk factors and their interactions, which play critical roles in life and disease systems. Identifying “synergistic” interactions with respect to the outcome of interest can help accurate phenotypic prediction and understand the underlying mechanism of system behavior. Many statistical measures for estimating synergistic interactions have been proposed in the literature for such a purpose. However, except for empirical performance, there is still no theoretical analysis on the power and limitation of these synergistic interaction measures. Results In this paper, it is shown that the existing information-theoretic multivariate synergy depends on a small subset of the interaction parameters in the model, sometimes on only one interaction parameter. In addition, an adjusted version of multivariate synergy is proposed as a new measure to estimate the interactive effects, with experiments conducted over both simulated data sets and a real-world GWAS data set to show the effectiveness. Conclusions We provide rigorous theoretical analysis and empirical evidence on why the information-theoretic multivariate synergy helps with identifying genetic risk factors via synergistic interactions. We further establish the rigorous sample complexity analysis on detecting interactive effects, confirmed by both simulated and real-world data sets.https://deepblue.lib.umich.edu/bitstream/2027.42/142802/1/12864_2018_Article_4552.pd
    corecore