19 research outputs found

    Efficient Alternative Method for Computing Multivariate Resultant Formulation

    Get PDF
    In elimination theory, the matrix method of computing the resultant remains the most popular method due to its lower computational complexity compared to Groebner-based and set characteristics approaches. However, for the matrix method to be effective, the size and nature of the elements of the matrix play an important role. If the resultant is not an exact resultant it has to be extracted from the determinant of the corresponding resultant matrix. In this paper, a new resultant matrix is proposed. The hybrid construction consists of four blocks, one of which uses an entry formula for computing a Dixon matrix, while two of the blocks use a mapping from Jouanolou’s method, and the final block consists of zero elements only. The new formulation is computed without intermediate cancelling terms, which reduces the complexity of the construction and enhances its effectiveness

    On the Bit Complexity of Solving Bilinear Polynomial Systems

    Get PDF
    International audienceWe bound the Boolean complexity of computing isolating hyperboxes for all complex roots of systems of bilinear polynomials. The resultant of such systems admits a family of determinantal Sylvester-type formulas, which we make explicit by means of homological complexes. The computation of the determinant of the resultant matrix is a bottleneck for the overall complexity. We exploit the quasi-Toeplitz structure to reduce the problem to efficient matrix-vector products, corresponding to multivariate polynomial multiplication. For zero-dimensional systems, we arrive at a primitive element and a rational univariate representation of the roots. The overall bit complexity of our probabilistic algorithm is O_B(n^4 D^4 + n^2 D^4 τ), where n is the number of variables, D equals the bilinear Bezout bound, and τ is the maximum coefficient bitsize. Finally, a careful infinitesimal symbolic perturbation of the system allows us to treat degenerate and positive dimensional systems, thus making our algorithms and complexity analysis applicable to the general case

    Isogeometric Design, Analysis and Optimisation of Lattice-Skin Structures

    Get PDF
    The advancements in additive manufacturing techniques enable novel designs using lattice structures in mechanical parts, lightweight materials, biomaterials and so forth. Lattice-skin structures are a class of structures that couple thin-shells with lattices, which potentially combine the advantages of the thin-shell and the lattice structure. A new and systematic isogeometric analysis approach that integrates the geometric design, structural analysis and optimisation of lattice-skin structures is proposed in the dissertation. In the geometric design of lattice-skin structures, a novel shape interrogation scheme for splines, specifically subdivision surfaces, is proposed, which is able to compute the line/surface intersection efficiently and robustly without resorting to successive refinements or iterations as in Newton-Raphson method. The line/surface intersection algorithm involves two steps: intersection detection and intersection computation. In the intersection detection process, a bounding volume tree of k-dops (discrete oriented polytopes) for the subdivision surface is first created in order to accelerate the intersection detection between the line and the surface. The spline patches which are detected to be possibly intersected by the line are converted to BĂ©zier representations. For the intersection computation, a matrix-based algorithm is applied, which converts the nonlinear intersection computation into solving a sequence of linear algebra problems using the singular value decomposition (SVD). Finally, the lattice-skin geometry is generated by projecting selected lattice nodes to the nearest intersection points intersected by the lattice edges. The Stanford bunny example demonstrates the efficiency and accuracy of the developed algorithm. The structural analysis of lattice-skin structures follows the isogeometric approach, in which the thin-shell is discretised with spline basis functions and the lattice structure is modelled with pin-jointed truss elements. In order to consider the lattice-skin coupling, a Lagrange multiplier approach is implemented to enforce the displacement compatibility between the coupled lattice nodes and the thin-shell. More importantly, the parametric coordinates of the coupled lattice nodes on the thin-shell surface are obtained directly from the lattice-skin geometry generation, which integrates the design and analysis process of lattice-skin structures. A sandwich plate example is analysed to verify the implementation and the accuracy of the lattice-skin coupling computation. In addition, a SIMP-like lattice topology optimisation method is proposed. The topology optimisation results of lattice structures are analysed and compared with several examples adapted from the benchmark examples commonly used in continuum topology optimisation. The SIMP-like lattice topology optimisation proposed is further applied to optimise the lattice in lattice-skin structures. The lattice-skin topology optimisation is fully integrated with the lattice-skin geometry design since the sensitivity analysis in the proposed method is based on lattice unit cells which are inherited from the geometry design stage. Finally, shape optimisation of lattice-skin structures using the free-form deformation (FFD) technique is studied. The corresponding shape sensitivity of lattice-skin structures is derived. The geometry update of the lattice-skin structure is determined by the deformation of the FFD control volume, and in this process the coupling between lattice nodes and the thin-shell is guaranteed by keeping the parametric coordinates of coupled lattice nodes which are obtained in the lattice-skin geometry design stage. A pentagon roof example is used to explore the combination of lattice topology optimisation and shape optimisation of lattice-skin structures

    Reconstruction of Specular Reflective Surfaces using Auto-Calibrating Deflectometry

    Get PDF
    This thesis discusses deflectometry as a reconstruction method for highly reflecting surfaces. It focuses on deflectometry alone and does not use other reconstruction techniques to supplement with additional data. It explains the measurement process and principle and provides a crash course into an efficient mathematical representation of the principles involved. Using this, it reformulates existing three-dimensional reconstructing methods, expands upon them and develops new ones

    Reconstruction of Specular Reflective Surfaces using Auto-Calibrating Deflectometry

    Get PDF
    This thesis discusses deflectometry as a reconstruction method for highly reflecting surfaces. It focuses on deflectometry alone and does not use other reconstruction techniques to supplement with additional data. It explains the measurement process and principle and provides a crash course into an efficient mathematical representation of the principles involved. Using this, it reformulates existing three-dimensional reconstructing methods, expands upon them and develops new ones

    Computer Science for Continuous Data:Survey, Vision, Theory, and Practice of a Computer Analysis System

    Get PDF
    Building on George Boole's work, Logic provides a rigorous foundation for the powerful tools in Computer Science that underlie nowadays ubiquitous processing of discrete data, such as strings or graphs. Concerning continuous data, already Alan Turing had applied "his" machines to formalize and study the processing of real numbers: an aspect of his oeuvre that we transform from theory to practice.The present essay surveys the state of the art and envisions the future of Computer Science for continuous data: natively, beyond brute-force discretization, based on and guided by and extending classical discrete Computer Science, as bridge between Pure and Applied Mathematics

    Contribution to the efficient modeling and design of passive waveguide devices through methods based on modal decompositions of electromagnetic fields in unconventional geometries

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madri, Escuela Politécnica Superior, Departamento de Tecnología Electrónica y de las Comunicaciones. Fecha de Lectura: 21-06-2019Este trabajo ha sido cofinanciado por el Ministerio de Economía, Industria y Competitividad (MINECO) del Gobierno de España a través de los proyectos TEC2013-47106-C3-2- R (TECOAMP) y TEC2016-76070-C3-1-R (AEI/FEDER, UE) (ADDMATE); el Gobierno de la Comunidad de Madrid a través del proyecto S2013/ICE-3000 (SPADERADAR-CM

    Reconstruction of Specular Reflective Surfaces using Auto-Calibrating Deflectometry

    Get PDF
    This thesis discusses deflectometry as a reconstruction method for highlyreflecting surfaces. It explains the measurement process and principle and provides a crash course into an efficient mathematical representation of the principles involved. Using this, it reformulates existing three-dimensional reconstructing methods, expands upon them and develops new ones. Building on these novel techniques, an auto-calibration is introduced that is able to refine a rough extrinsic calibration

    Novel computational techniques for mapping and classifying Next-Generation Sequencing data

    Get PDF
    Since their emergence around 2006, Next-Generation Sequencing technologies have been revolutionizing biological and medical research. Quickly obtaining an extensive amount of short or long reads of DNA sequence from almost any biological sample enables detecting genomic variants, revealing the composition of species in a metagenome, deciphering cancer biology, decoding the evolution of living or extinct species, or understanding human migration patterns and human history in general. The pace at which the throughput of sequencing technologies is increasing surpasses the growth of storage and computer capacities, which creates new computational challenges in NGS data processing. In this thesis, we present novel computational techniques for read mapping and taxonomic classification. With more than a hundred of published mappers, read mapping might be considered fully solved. However, the vast majority of mappers follow the same paradigm and only little attention has been paid to non-standard mapping approaches. Here, we propound the so-called dynamic mapping that we show to significantly improve the resulting alignments compared to traditional mapping approaches. Dynamic mapping is based on exploiting the information from previously computed alignments, helping to improve the mapping of subsequent reads. We provide the first comprehensive overview of this method and demonstrate its qualities using Dynamic Mapping Simulator, a pipeline that compares various dynamic mapping scenarios to static mapping and iterative referencing. An important component of a dynamic mapper is an online consensus caller, i.e., a program collecting alignment statistics and guiding updates of the reference in the online fashion. We provide Ococo, the first online consensus caller that implements a smart statistics for individual genomic positions using compact bit counters. Beyond its application to dynamic mapping, Ococo can be employed as an online SNP caller in various analysis pipelines, enabling SNP calling from a stream without saving the alignments on disk. Metagenomic classification of NGS reads is another major topic studied in the thesis. Having a database with thousands of reference genomes placed on a taxonomic tree, the task is to rapidly assign a huge amount of NGS reads to tree nodes, and possibly estimate the relative abundance of involved species. In this thesis, we propose improved computational techniques for this task. In a series of experiments, we show that spaced seeds consistently improve the classification accuracy. We provide Seed-Kraken, a spaced seed extension of Kraken, the most popular classifier at present. Furthermore, we suggest ProPhyle, a new indexing strategy based on a BWT-index, obtaining a much smaller and more informative index compared to Kraken. We provide a modified version of BWA that improves the BWT-index for a quick k-mer look-up
    corecore