10,886 research outputs found

    Statistical Model of Shape Moments with Active Contour Evolution for Shape Detection and Segmentation

    Get PDF
    This paper describes a novel method for shape representation and robust image segmentation. The proposed method combines two well known methodologies, namely, statistical shape models and active contours implemented in level set framework. The shape detection is achieved by maximizing a posterior function that consists of a prior shape probability model and image likelihood function conditioned on shapes. The statistical shape model is built as a result of a learning process based on nonparametric probability estimation in a PCA reduced feature space formed by the Legendre moments of training silhouette images. A greedy strategy is applied to optimize the proposed cost function by iteratively evolving an implicit active contour in the image space and subsequent constrained optimization of the evolved shape in the reduced shape feature space. Experimental results presented in the paper demonstrate that the proposed method, contrary to many other active contour segmentation methods, is highly resilient to severe random and structural noise that could be present in the data

    Segmentation and tracking of video objects for a content-based video indexing context

    Get PDF
    This paper examines the problem of segmentation and tracking of video objects for content-based information retrieval. Segmentation and tracking of video objects plays an important role in index creation and user request definition steps. The object is initially selected using a semi-automatic approach. For this purpose, a user-based selection is required to define roughly the object to be tracked. In this paper, we propose two different methods to allow an accurate contour definition from the user selection. The first one is based on an active contour model which progressively refines the selection by fitting the natural edges of the object while the second used a binary partition tree with aPeer ReviewedPostprint (published version

    Markov mezƑk a kĂ©pmodellezĂ©sben, alkalmazĂĄsuk az automatikus kĂ©pszegmentĂĄlĂĄs terĂŒletĂ©n = Markovian Image Models: Applications in Unsupervised Image Segmentation

    Get PDF
    1) KifejlesztettĂŒnk egy olyan szĂ­n Ă©s textĂșra alapĂș szegmentĂĄlĂł MRF algoritmust, amely alkalmas egy kĂ©p automatikus szegmentĂĄlĂĄsĂĄt elvĂ©gezni. Az eredmĂ©nyeinket az Image and Vision Computing folyĂłiratban publikĂĄltuk. 2) KifejlesztettĂŒnk egy Reversible Jump Markov Chain Monte Carlo technikĂĄn alapulĂł automatikus kĂ©pszegmentĂĄlĂł eljĂĄrĂĄst, melyet sikeresen alkalmaztunk szĂ­nes kĂ©pek teljesen automatikus szegmentĂĄlĂĄsĂĄra. Az eredmĂ©nyeinket a BMVC 2004 konferenciĂĄn Ă©s az Image and Vision Computing folyĂłiratban publikĂĄltuk. 3) A modell többrĂ©tegƱ tovĂĄbbfejlesztĂ©sĂ©t alkalmaztuk video objektumok szĂ­n Ă©s mozgĂĄs alapĂș szegmentĂĄlĂĄsĂĄra, melynek eredmĂ©nyeit a HACIPPR 2005 illetve az ACCV 2006 nemzetközi konferenciĂĄkon publikĂĄltuk. SzintĂ©n ehhez az alapproblĂ©mĂĄhoz kapcsolĂłdik HorvĂĄth PĂ©ter hallgatĂłmmal az optic flow szamĂ­tĂĄsĂĄval illetve szĂ­n, textĂșra Ă©s mozgĂĄs alapĂș GVF aktĂ­v kontĂșrral kapcsoltos munkĂĄink. TDK dolgozata elsƑ helyezĂ©st Ă©rt el a 2004-es helyi versenyen, az eredmĂ©nyeinket pedig a KEPAF 2004 konferenciĂĄn publikĂĄltuk. 4) HorvĂĄth PĂ©ter PhD hallgatĂłmmal illetve az franciaorszĂĄgi INRIA Ariana csoportjĂĄval, kidolgoztunk egy olyan kĂ©pszegmentĂĄlĂł eljĂĄrĂĄst, amely a szegmentĂĄlandĂł objektum alakjĂĄt is figyelembe veszi. Az eredmĂ©nyeinket az ICPR 2006 illetve az ICCVGIP 2006 konferenciĂĄn foglaltuk össze. A modell elƑzmĂ©nyekĂ©nt kidolgoztunk tovĂĄbbĂĄ egy alakzat-momemntumokon alapulĂł aktĂ­v kontĂșr modellt, amelyet a HACIPPR 2005 konferenciĂĄn publikĂĄltunk. | 1) We have proposed a monogrid MRF model which is able to combine color and texture features in order to improve the quality of segmentation results. We have also solved the estimation of model parameters. This work has been published in the Image and Vision Computing journal. 2) We have proposed an RJMCMC sampling method which is able to identify multi-dimensional Gaussian mixtures. Using this technique, we have developed a fully automatic color image segmentation algorithm. Our results have been published at BMVC 2004 international conference and in the Image and Vision Computing journal. 3) A new multilayer MRF model has been proposed which is able to segment an image based on multiple cues (such as color, texture, or motion). This work has been published at HACIPPR 2005 and ACCV 2006 international conferences. The work on optic flow computation and color-, texture-, and motion-based GVF active contours doen with my student, Mr. Peter Horvath, won a first price at the local Student Research Competition in 2004. Results have been presented at KEPAF 2004 conference. 4) A new shape prior, called 'gas of circles' has been introduced using active contour models. This work is done in collaboration with the Ariana group of INRIA, France and my PhD student, Mr. Peter Horvath. Results are published at the ICPR 2006 and ICCVGIP 2006 conferences. A preliminary study on active contour models using shape-moments has also been done, these results are published at HACIPPR 2005

    Segmentation of articular cartilage and early osteoarthritis based on the fuzzy soft thresholding approach driven by modified evolutionary ABC optimization and local statistical aggregation

    Get PDF
    Articular cartilage assessment, with the aim of the cartilage loss identification, is a crucial task for the clinical practice of orthopedics. Conventional software (SW) instruments allow for just a visualization of the knee structure, without post processing, offering objective cartilage modeling. In this paper, we propose the multiregional segmentation method, having ambitions to bring a mathematical model reflecting the physiological cartilage morphological structure and spots, corresponding with the early cartilage loss, which is poorly recognizable by the naked eye from magnetic resonance imaging (MRI). The proposed segmentation model is composed from two pixel's classification parts. Firstly, the image histogram is decomposed by using a sequence of the triangular fuzzy membership functions, when their localization is driven by the modified artificial bee colony (ABC) optimization algorithm, utilizing a random sequence of considered solutions based on the real cartilage features. In the second part of the segmentation model, the original pixel's membership in a respective segmentation class may be modified by using the local statistical aggregation, taking into account the spatial relationships regarding adjacent pixels. By this way, the image noise and artefacts, which are commonly presented in the MR images, may be identified and eliminated. This fact makes the model robust and sensitive with regards to distorting signals. We analyzed the proposed model on the 2D spatial MR image records. We show different MR clinical cases for the articular cartilage segmentation, with identification of the cartilage loss. In the final part of the analysis, we compared our model performance against the selected conventional methods in application on the MR image records being corrupted by additive image noise.Web of Science117art. no. 86

    Recurrent Fully Convolutional Neural Networks for Multi-slice MRI Cardiac Segmentation

    Full text link
    In cardiac magnetic resonance imaging, fully-automatic segmentation of the heart enables precise structural and functional measurements to be taken, e.g. from short-axis MR images of the left-ventricle. In this work we propose a recurrent fully-convolutional network (RFCN) that learns image representations from the full stack of 2D slices and has the ability to leverage inter-slice spatial dependences through internal memory units. RFCN combines anatomical detection and segmentation into a single architecture that is trained end-to-end thus significantly reducing computational time, simplifying the segmentation pipeline, and potentially enabling real-time applications. We report on an investigation of RFCN using two datasets, including the publicly available MICCAI 2009 Challenge dataset. Comparisons have been carried out between fully convolutional networks and deep restricted Boltzmann machines, including a recurrent version that leverages inter-slice spatial correlation. Our studies suggest that RFCN produces state-of-the-art results and can substantially improve the delineation of contours near the apex of the heart.Comment: MICCAI Workshop RAMBO 201
    • 

    corecore