3,943 research outputs found

    Bayesian Inference on Matrix Manifolds for Linear Dimensionality Reduction

    Full text link
    We reframe linear dimensionality reduction as a problem of Bayesian inference on matrix manifolds. This natural paradigm extends the Bayesian framework to dimensionality reduction tasks in higher dimensions with simpler models at greater speeds. Here an orthogonal basis is treated as a single point on a manifold and is associated with a linear subspace on which observations vary maximally. Throughout this paper, we employ the Grassmann and Stiefel manifolds for various dimensionality reduction problems, explore the connection between the two manifolds, and use Hybrid Monte Carlo for posterior sampling on the Grassmannian for the first time. We delineate in which situations either manifold should be considered. Further, matrix manifold models are used to yield scientific insight in the context of cognitive neuroscience, and we conclude that our methods are suitable for basic inference as well as accurate prediction.Comment: All datasets and computer programs are publicly available at http://www.ics.uci.edu/~babaks/Site/Codes.htm

    Face recognition in different subspaces - A comparative study

    Get PDF
    Face recognition is one of the most successful applications of image analysis and understanding and has gained much attention in recent years. Among many approaches to the problem of face recognition, appearance-based subspace analysis still gives the most promising results. In this paper we study the three most popular appearance-based face recognition projection methods (PCA, LDA and ICA). All methods are tested in equal working conditions regarding preprocessing and algorithm implementation on the FERET data set with its standard tests. We also compare the ICA method with its whitening preprocess and find out that there is no significant difference between them. When we compare different projection with different metrics we found out that the LDA+COS combination is the most promising for all tasks. The L1 metric gives the best results in combination with PCA and ICA1, and COS is superior to any other metric when used with LDA and ICA2. Our results are compared to other studies and some discrepancies are pointed ou

    A Detailed Investigation into Low-Level Feature Detection in Spectrogram Images

    Get PDF
    Being the first stage of analysis within an image, low-level feature detection is a crucial step in the image analysis process and, as such, deserves suitable attention. This paper presents a systematic investigation into low-level feature detection in spectrogram images. The result of which is the identification of frequency tracks. Analysis of the literature identifies different strategies for accomplishing low-level feature detection. Nevertheless, the advantages and disadvantages of each are not explicitly investigated. Three model-based detection strategies are outlined, each extracting an increasing amount of information from the spectrogram, and, through ROC analysis, it is shown that at increasing levels of extraction the detection rates increase. Nevertheless, further investigation suggests that model-based detection has a limitation—it is not computationally feasible to fully evaluate the model of even a simple sinusoidal track. Therefore, alternative approaches, such as dimensionality reduction, are investigated to reduce the complex search space. It is shown that, if carefully selected, these techniques can approach the detection rates of model-based strategies that perform the same level of information extraction. The implementations used to derive the results presented within this paper are available online from http://stdetect.googlecode.com
    • …
    corecore