923 research outputs found

    Numerical simulation and analysis of multi-scale cavitating flows

    Get PDF
    Cavitating flows include vapour structures with a wide range of different length scales, from micro-bubbles to large cavities. The correct estimation of small-scale cavities can be as important as that of large-scale structures, because cavitation inception as well as the resulting noise, erosion and strong vibrations occur at small time and length scales. In this study, a multi-scale cavitating flow around a sharp-edged bluff body is investigated. For numerical analysis, while popular homogeneous mixture models are practical options for large-scale applications, they are normally limited in the representation of small-scale cavities. Therefore, a hybrid cavitation model is developed by coupling a mixture model with a Lagrangian bubble model. The Lagrangian model is based on a four-way coupling approach, which includes new submodels, to consider various small-scale phenomena in cavitation dynamics. Additionally, the coupling of the mixture and the Lagrangian models is based on an improved algorithm that is compatible with the flow physics. The numerical analysis provides a detailed description of the multi-scale dynamics of cavities as well as the interactions between vapour structures of various scales and the continuous flow. The results, among others, show that small-scale cavities not only are important at the inception and collapse steps, but also influence the development of large-scale structures. Furthermore, a comparison of the results with those from experiment shows considerable improvements in both predicting the large cavities and capturing the small-scale structures using the hybrid model. More accurate results (compared with the traditional mixture model) can be achieved even with a lower mesh resolution

    An Arbitrary-Lagrangian-Eulerian hybrid finite volume/finite element method on moving unstructured meshes for the Navier-Stokes equations

    Full text link
    We present a novel second-order semi-implicit hybrid finite volume / finite element (FV/FE) scheme for the numerical solution of the incompressible and weakly compressible Navier-Stokes equations on moving unstructured meshes using an Arbitrary-Lagrangian-Eulerian (ALE) formulation. The scheme is based on a suitable splitting of the governing PDE into subsystems and employs staggered grids, where the pressure is defined on the primal simplex mesh, while the velocity and the remaining flow quantities are defined on an edge-based staggered dual mesh. The key idea of the scheme is to discretize the nonlinear convective and viscous terms using an explicit FV scheme that employs the space-time divergence form of the governing equations on moving space-time control volumes. For the convective terms, an ALE extension of the Ducros flux on moving meshes is introduced, which is kinetic energy preserving and stable in the energy norm when adding suitable numerical dissipation terms. Finally, the pressure equation of the Navier-Stokes system is solved on the new mesh configuration using a continuous FE method, with P1\mathbb{P}_1 Lagrange elements. The ALE hybrid FV/FE method is applied to several incompressible test problems ranging from non-hydrostatic free surface flows over a rising bubble to flows over an oscillating cylinder and an oscillating ellipse. Via the simulation of a circular explosion problem on a moving mesh, we show that the scheme applied to the weakly compressible Navier-Stokes equations is able to capture weak shock waves, rarefactions and moving contact discontinuities. We show that our method is particularly efficient for the simulation of weakly compressible flows in the low Mach number limit, compared to a fully explicit ALE schem

    The use of the mesh free methods (radial basis functions) in the modeling of radionuclide migration and moving boundary value problems

    Get PDF
    Recently, the mesh free methods (radial basis functions-RBFs) have emerged as a novel computing method in the scientific and engineering computing community. The numerical solution of partial differential equations (PDEs) has been usually obtained by finite difference methods (FDM), finite element methods (FEM) and boundary elements methods (BEM). These conventional numerical methods still have some drawbacks. For example, the construction of the mesh in two or more dimensions is a nontrivial problem. Solving PDEs using radial basis function (RBF) collocations is an attractive alternative to these traditional methods because no tedious mesh generation is required. We compare the mesh free method, which uses radial basis functions, with the traditional finite difference scheme and analytical solutions. We will present some examples of using RBFs in geostatistical analysis of radionuclide migration modeling. The advection-dispersion equation will be used in the Eulerian and Lagrangian forms. Stefan's or moving boundary value problems will also be presented. The position of the moving boundary will be simulated by the moving data centers method and level set method
    • …
    corecore