4,740 research outputs found

    Railway Network Delay Evolution: A Heterogeneous Graph Neural Network Approach

    Full text link
    Railway operations involve different types of entities (stations, trains, etc.), making the existing graph/network models with homogenous nodes (i.e., the same kind of nodes) incapable of capturing the interactions between the entities. This paper aims to develop a heterogeneous graph neural network (HetGNN) model, which can address different types of nodes (i.e., heterogeneous nodes), to investigate the train delay evolution on railway networks. To this end, a graph architecture combining the HetGNN model and the GraphSAGE homogeneous GNN (HomoGNN), called SAGE-Het, is proposed. The aim is to capture the interactions between trains, trains and stations, and stations and other stations on delay evolution based on different edges. In contrast to the traditional methods that require the inputs to have constant dimensions (e.g., in rectangular or grid-like arrays) or only allow homogeneous nodes in the graph, SAGE-Het allows for flexible inputs and heterogeneous nodes. The data from two sub-networks of the China railway network are applied to test the performance and robustness of the proposed SAGE-Het model. The experimental results show that SAGE-Het exhibits better performance than the existing delay prediction methods and some advanced HetGNNs used for other prediction tasks; the predictive performances of SAGE-Het under different prediction time horizons (10/20/30 min ahead) all outperform other baseline methods; Specifically, the influences of train interactions on delay propagation are investigated based on the proposed model. The results show that train interactions become subtle when the train headways increase . This finding directly contributes to decision-making in the situation where conflict-resolution or train-canceling actions are needed.Comment: 29 pages; 8 figures; 7 table

    Learning from accidents : machine learning for safety at railway stations

    Get PDF
    In railway systems, station safety is a critical aspect of the overall structure, and yet, accidents at stations still occur. It is time to learn from these errors and improve conventional methods by utilizing the latest technology, such as machine learning (ML), to analyse accidents and enhance safety systems. ML has been employed in many fields, including engineering systems, and it interacts with us throughout our daily lives. Thus, we must consider the available technology in general and ML in particular in the context of safety in the railway industry. This paper explores the employment of the decision tree (DT) method in safety classification and the analysis of accidents at railway stations to predict the traits of passengers affected by accidents. The critical contribution of this study is the presentation of ML and an explanation of how this technique is applied for ensuring safety, utilizing automated processes, and gaining benefits from this powerful technology. To apply and explore this method, a case study has been selected that focuses on the fatalities caused by accidents at railway stations. An analysis of some of these fatal accidents as reported by the Rail Safety and Standards Board (RSSB) is performed and presented in this paper to provide a broader summary of the application of supervised ML for improving safety at railway stations. Finally, this research shows the vast potential of the innovative application of ML in safety analysis for the railway industry

    Improving Construction Project Schedules before Execution

    Get PDF
    The construction industry has been forever blighted by delay and disruption. To address this problem, this study proposes the Fitzsimmons Method (FM method) to improve the scheduling performance of activities on the Critical Path before the project execution. The proposed FM method integrates Bayesian Networks to estimate the conditional probability of activity delay given its predecessor and Support Vector Machines to estimate the time delay. The FM method was trained on 302 completed infrastructure construction projects and validated on a £40 million completed road construction project. Compared with traditional Monte Carlo Simulation results, the proposed FM method is 52% more accurate in predicting the projects’ time delay. The proposed FM method contributes to leveraging the vast quantities of data available to improve the estimation of time risk on infrastructure and construction projects
    • …
    corecore