1,267 research outputs found

    Supporting Mobile Distributed Services

    Get PDF
    With sensors becoming increasingly ubiquitous, there is a tremendous potential for services which can take advantage of the data collected by these sensors, from the important -- such as detecting medical emergencies and imminent natural disasters -- to the mundane -- such as waiting times experienced by diners at restaurants. This information can then be used to offer useful services. For example, a busy professional could find a restaurant to go to for a quick lunch based on information available from smartphones of people already there having lunch, waiting to be seated, or even heading there; a government could conduct a census in real-time, or “sense” public opinion. I refer to such services as mobile distributed services. The barriers to offering mobile distributed services continue to be prohibitive for most: not only must these services be implemented, but they would also inevitably compete for resources on people's devices. This is in part because such services are poorly understood, and consequently, there is limited language support for programming them. In this thesis, I address practical challenges related to three important problems in mobile distributed services. In addition, I present my efforts towards a formal model for representing mobile distributed services. First, I address the challenge of enhancing the programmability of mobile distributed services. This thesis presents a set of core mechanisms underlying mobile distributed services. I interpret and implement these mechanisms for the domain of crowd-sourced services. A distributed runtime middleware, CSSWare, has been developed to simplify the burden of initiating and managing crowd-sourced services. CSSWare provides a set of domain-specific programming constructs for launching a new service. Service designers may launch novel services over CSSWare by simply plugging in small pieces of service specific code. Particularly, new services can be prototyped in fewer than 100 lines of code. This ease of programming promises to democratize the building of such services. Second, I address the challenge of efficiently supporting the sensing needs of mobile distributed services, and more generally sensor-based applications. I developed ShareSens, an approach to opportunistically merge sensing requirements of independent applications. When multiple applications make sensing requests, instead of serving each request independently, ShareSens opportunistically merges the requests, achieving significant power and energy savings. Custom filters are then used to extract the data required by each application. Third, I address the problem of programming the sensing requirements of mobile distributed services. In particular, ModeSens is presented to allow multi-modal sensing requirements of a service to be programmed separately from its function. Programmers can specify the modes in which a service can be, the sensing needs of each mode, and the sensed events which trigger mode transition. ModeSens then monitors for mode transition events, and dynamically adjusts the sensing frequencies to match the current mode's requirements. Separating the mode change logic from an application's functional logic leads to more modular code. In addition, I present MobDisS (Mobile Distributed Services), an early model for representing mobile distributed services, allowing them to be carefully studied. Services can be built by composing simpler services. I present the syntax and operational semantics of MobDisS. Although this work can be evaluated along multiple dimensions, my primary goal is to enhance programmability of mobile distributed services. This is illustrated by providing the actual code required for creating two realistic services using CSSWare. Each service demonstrates different facets of the middleware, ranging from the use of different sensors to the use of different facilities provided by CSSWare. Furthermore, experimental results are presented to demonstrate scalability, performance and data-contributor side energy efficiency of CSSWare and ShareSens. Finally, a set of experimental evaluation is carried out to measure the performance and energy costs of using ModeSens

    Control Theory in Engineering

    Get PDF
    The subject matter of this book ranges from new control design methods to control theory applications in electrical and mechanical engineering and computers. The book covers certain aspects of control theory, including new methodologies, techniques, and applications. It promotes control theory in practical applications of these engineering domains and shows the way to disseminate researchers’ contributions in the field. This project presents applications that improve the properties and performance of control systems in analysis and design using a higher technical level of scientific attainment. The authors have included worked examples and case studies resulting from their research in the field. Readers will benefit from new solutions and answers to questions related to the emerging realm of control theory in engineering applications and its implementation

    Subject-Oriented Business Process Management

    Get PDF
    Information Systems Applications (incl.Internet); Business Information Systems; Computer Appl. in Administrative Data Processing; Management of Computing and Information System

    Affective Computing

    Get PDF
    This book provides an overview of state of the art research in Affective Computing. It presents new ideas, original results and practical experiences in this increasingly important research field. The book consists of 23 chapters categorized into four sections. Since one of the most important means of human communication is facial expression, the first section of this book (Chapters 1 to 7) presents a research on synthesis and recognition of facial expressions. Given that we not only use the face but also body movements to express ourselves, in the second section (Chapters 8 to 11) we present a research on perception and generation of emotional expressions by using full-body motions. The third section of the book (Chapters 12 to 16) presents computational models on emotion, as well as findings from neuroscience research. In the last section of the book (Chapters 17 to 22) we present applications related to affective computing

    Optimal control and approximations

    Get PDF

    Optimal control and approximations

    Get PDF
    • …
    corecore