1,874 research outputs found

    Stable Backward Diffusion Models that Minimise Convex Energies

    Get PDF
    The inverse problem of backward diffusion is known to be ill-posed and highly unstable. Backward diffusion processes appear naturally in image enhancement and deblurring applications. It is therefore greatly desirable to establish a backward diffusion model which implements a smart stabilisation approach that can be used in combination with an easy to handle numerical scheme. So far, existing stabilisation strategies in literature require sophisticated numerics to solve the underlying initial value problem. We derive a class of space-discrete one-dimensional backward diffusion as gradient descent of energies where we gain stability by imposing range constraints. Interestingly, these energies are even convex. Furthermore, we establish a comprehensive theory for the time-continuous evolution and we show that stability carries over to a simple explicit time discretisation of our model. Finally, we confirm the stability and usefulness of our technique in experiments in which we enhance the contrast of digital greyscale and colour images

    Computer vision in target pursuit using a UAV

    Get PDF
    Research in target pursuit using Unmanned Aerial Vehicle (UAV) has gained attention in recent years, this is primarily due to decrease in cost and increase in demand of small UAVs in many sectors. In computer vision, target pursuit is a complex problem as it involves the solving of many sub-problems which are typically concerned with the detection, tracking and following of the object of interest. At present, the majority of related existing methods are developed using computer simulation with the assumption of ideal environmental factors, while the remaining few practical methods are mainly developed to track and follow simple objects that contain monochromatic colours with very little texture variances. Current research in this topic is lacking of practical vision based approaches. Thus the aim of this research is to fill the gap by developing a real-time algorithm capable of following a person continuously given only a photo input. As this research considers the whole procedure as an autonomous system, therefore the drone is activated automatically upon receiving a photo of a person through Wi-Fi. This means that the whole system can be triggered by simply emailing a single photo from any device anywhere. This is done by first implementing image fetching to automatically connect to WIFI, download the image and decode it. Then, human detection is performed to extract the template from the upper body of the person, the intended target is acquired using both human detection and template matching. Finally, target pursuit is achieved by tracking the template continuously while sending the motion commands to the drone. In the target pursuit system, the detection is mainly accomplished using a proposed human detection method that is capable of detecting, extracting and segmenting the human body figure robustly from the background without prior training. This involves detecting face, head and shoulder separately, mainly using gradient maps. While the tracking is mainly accomplished using a proposed generic and non-learning template matching method, this involves combining intensity template matching with colour histogram model and employing a three-tier system for template management. A flight controller is also developed, it supports three types of controls: keyboard, mouse and text messages. Furthermore, the drone is programmed with three different modes: standby, sentry and search. To improve the detection and tracking of colour objects, this research has also proposed several colour related methods. One of them is a colour model for colour detection which consists of three colour components: hue, purity and brightness. Hue represents the colour angle, purity represents the colourfulness and brightness represents intensity. It can be represented in three different geometric shapes: sphere, hemisphere and cylinder, each of these shapes also contains two variations. Experimental results have shown that the target pursuit algorithm is capable of identifying and following the target person robustly given only a photo input. This can be evidenced by the live tracking and mapping of the intended targets with different clothing in both indoor and outdoor environments. Additionally, the various methods developed in this research could enhance the performance of practical vision based applications especially in detecting and tracking of objects

    Stable Backward Diffusion Models that Minimise Convex Energies

    Get PDF
    The inverse problem of backward diffusion is known to be ill-posed and highly unstable. Backward diffusion processes appear naturally in image enhancement and deblurring applications. It is therefore greatly desirable to establish a backward diffusion model which implements a smart stabilisation approach that can be used in combination with an easy-to-handle numerical scheme. So far, existing stabilisation strategies in the literature require sophisticated numerics to solve the underlying initial value problem. We derive a class of space-discrete one-dimensional backward diffusion as gradient descent of energies where we gain stability by imposing range constraints. Interestingly, these energies are even convex. Furthermore, we establish a comprehensive theory for the time-continuous evolution and we show that stability carries over to a simple explicit time discretisation of our model. Finally, we confirm the stability and usefulness of our technique in experiments in which we enhance the contrast of digital greyscale and colour images

    Video content analysis for intelligent forensics

    Get PDF
    The networks of surveillance cameras installed in public places and private territories continuously record video data with the aim of detecting and preventing unlawful activities. This enhances the importance of video content analysis applications, either for real time (i.e. analytic) or post-event (i.e. forensic) analysis. In this thesis, the primary focus is on four key aspects of video content analysis, namely; 1. Moving object detection and recognition, 2. Correction of colours in the video frames and recognition of colours of moving objects, 3. Make and model recognition of vehicles and identification of their type, 4. Detection and recognition of text information in outdoor scenes. To address the first issue, a framework is presented in the first part of the thesis that efficiently detects and recognizes moving objects in videos. The framework targets the problem of object detection in the presence of complex background. The object detection part of the framework relies on background modelling technique and a novel post processing step where the contours of the foreground regions (i.e. moving object) are refined by the classification of edge segments as belonging either to the background or to the foreground region. Further, a novel feature descriptor is devised for the classification of moving objects into humans, vehicles and background. The proposed feature descriptor captures the texture information present in the silhouette of foreground objects. To address the second issue, a framework for the correction and recognition of true colours of objects in videos is presented with novel noise reduction, colour enhancement and colour recognition stages. The colour recognition stage makes use of temporal information to reliably recognize the true colours of moving objects in multiple frames. The proposed framework is specifically designed to perform robustly on videos that have poor quality because of surrounding illumination, camera sensor imperfection and artefacts due to high compression. In the third part of the thesis, a framework for vehicle make and model recognition and type identification is presented. As a part of this work, a novel feature representation technique for distinctive representation of vehicle images has emerged. The feature representation technique uses dense feature description and mid-level feature encoding scheme to capture the texture in the frontal view of the vehicles. The proposed method is insensitive to minor in-plane rotation and skew within the image. The capability of the proposed framework can be enhanced to any number of vehicle classes without re-training. Another important contribution of this work is the publication of a comprehensive up to date dataset of vehicle images to support future research in this domain. The problem of text detection and recognition in images is addressed in the last part of the thesis. A novel technique is proposed that exploits the colour information in the image for the identification of text regions. Apart from detection, the colour information is also used to segment characters from the words. The recognition of identified characters is performed using shape features and supervised learning. Finally, a lexicon based alignment procedure is adopted to finalize the recognition of strings present in word images. Extensive experiments have been conducted on benchmark datasets to analyse the performance of proposed algorithms. The results show that the proposed moving object detection and recognition technique superseded well-know baseline techniques. The proposed framework for the correction and recognition of object colours in video frames achieved all the aforementioned goals. The performance analysis of the vehicle make and model recognition framework on multiple datasets has shown the strength and reliability of the technique when used within various scenarios. Finally, the experimental results for the text detection and recognition framework on benchmark datasets have revealed the potential of the proposed scheme for accurate detection and recognition of text in the wild

    Image Aesthetic Assessment: A Comparative Study of Hand-Crafted & Deep Learning Models

    Get PDF
    publishedVersio

    JERS-1 SAR and LANDSAT-5 TM image data fusion: An application approach for lithological mapping

    Get PDF
    Satellite image data fusion is an image processing set of procedures utilise either for image optimisation for visual photointerpretation, or for automated thematic classification with low error rate and high accuracy. Lithological mapping using remote sensing image data relies on the spectral and textural information of the rock units of the area to be mapped. These pieces of information can be derived from Landsat optical TM and JERS-1 SAR images respectively. Prior to extracting such information (spectral and textural) and fusing them together, geometric image co-registration between TM and the SAR, atmospheric correction of the TM, and SAR despeckling are required. In this thesis, an appropriate atmospheric model is developed and implemented utilising the dark pixel subtraction method for atmospheric correction. For SAR despeckling, an efficient new method is also developed to test whether the SAR filter used remove the textural information or not. For image optimisation for visual photointerpretation, a new method of spectral coding of the six bands of the optical TM data is developed. The new spectral coding method is used to produce efficient colour composite with high separability between the spectral classes similar to that if the whole six optical TM bands are used together. This spectral coded colour composite is used as a spectral component, which is then fused with the textural component represented by the despeckled JERS-1 SAR using the fusion tools, including the colour transform and the PCT. The Grey Level Cooccurrence Matrix (GLCM) technique is used to build the textural data set using the speckle filtered JERS-1 SAR data making seven textural GLCM measures. For automated thematic mapping and by the use of both the six TM spectral data and the seven textural GLCM measures, a new method of classification has been developed using the Maximum Likelihood Classifier (MLC). The method is named the sequential maximum likelihood classification and works efficiently by comparison the classified textural pixels, the classified spectral pixels, and the classified textural-spectral pixels, and gives the means of utilising the textural and spectral information for automated lithological mapping

    Melioration of color calibration, goal detection and self-localization systems of NAO humanoid robots

    Get PDF
    Selle lõputöö teemaks on autonoomsete robotite jalgpalli tarkvara arendamine.Vaatluse all on teemad nagu värvide kalibreerimine, objetkituvastus ja lokaliseerimine. Uus YUV värviruumi põhine automaatne värvide kalibreerimine on pakutud. Esitatakse detailne kirjeldus automaatse värvide kalibreerimise algoritmi implemenmtreerimisest koos visuaalsete näidetega, mis illustreerivad algoritmi toimimist. Samuti räägitakse täpsemalt muutustest, mis on implementeeritud väravate tuvastamise moodulis ja põhjustest nende muudatuste taga, andes hea ülevaate objekti tuvastamise algoritmi loogikast. Kirjeldatakse hetkel kasutatavat lokaliseerimissüsteemi ja pakutakse välja ning seletatakse lokaliseerimissüsteem parandamise tehnikat.In this thesis, work regarding to autonomous robot soccer software development is presented. The work covers color calibration, object detection and robot localization topics. Novel YUV color space based method for the automation of color calibration is proposed. Detailed description of automatic color calibration technique implementation is provided along with the visual results illustrating performance of the method. Changes implemented to the goal detection module and motivation behind them are described in detail, providing good overview of the logic of the object recognition algorithm. Utilised localisation system is also described and, finally, the localization system enhancement technique is proposed and explained
    corecore