165 research outputs found

    Ant-inspired Interaction Networks For Decentralized Vehicular Traffic Congestion Control

    Get PDF
    Mimicking the autonomous behaviors of animals and their adaptability to changing or foreign environments lead to the development of swarm intelligence techniques such as ant colony optimization (ACO) and particle swarm optimization (PSO) now widely used to tackle a variety of optimization problems. The aim of this dissertation is to develop an alternative swarm intelligence model geared toward decentralized congestion avoidance and to determine qualities of the model suitable for use in a transportation network. A microscopic multi-agent interaction network inspired by insect foraging behaviors, especially ants, was developed and consequently adapted to prioritize the avoidance of congestion, evaluated as perceived density of other agents in the immediate environment extrapolated from the occurrence of direct interactions between agents, while foraging for food outside the base/nest. The agents eschew pheromone trails or other forms of stigmergic communication in favor of these direct interactions whose rate is the primary motivator for the agents\u27 decision making process. The decision making process at the core of the multi-agent interaction network is consequently transferred to transportation networks utilizing vehicular ad-hoc networks (VANETs) for communication between vehicles. Direct interactions are replaced by dedicated short range communications for wireless access in vehicular environments (DSRC/WAVE) messages used for a variety of applications like left turn assist, intersection collision avoidance, or cooperative adaptive cruise control. Each vehicle correlates the traffic on the wireless network with congestion in the transportation network and consequently decides whether to reroute and, if so, what alternate route to take in a decentralized, non-deterministic manner. The algorithm has been shown to increase throughput and decrease mean travel times significantly while not requiring access to centralized infrastructure or up-to-date traffic information

    Multiscale dynamics in honeybee societies

    Get PDF
    In this dissertation, I examine the social organization of a model organism, the honeybee, at multiple scales. I begin in Part I at the microbial scale, by studying the relationship between the social caste of individuals and the microbes they harbour in their gastrointestinal tracts. Using 16S rRNA sequence data, I reconstruct the gut microbiomes of honeybees of different castes. I find that the microbiomes of two previously-uncharacterized social castes -- drones and queens -- contain the same bacteria as those in the guts of worker bees. However, despite this similarity, I show that the compositions of these bacteria in drones and queens are sufficiently different that their microbiomes can be distinguished from those of workers. In Part II, I study the honeybee society at the level of its individual constituents, in particular, the set of foragers. I characterize the distribution of foraging activity across these individuals in the society, and find that this is highly skewed, with some individuals contributing much more to the activity of the colony than others. I establish these results in the framework used to describe the wealth of individuals in human society, and also characterize the temporal variation and resilience of foraging activity. In Part III, I describe a system to track individual honeybees and their interactions inside a two-dimensional observation hive with high spatiotemporal resolution. At the level of individual honeybees, I study the temporal statistics of trophallaxis, an important social interaction that occurs in honeybee societies, and find that the distribution of trophallaxis durations is similar to the distribution of face-to-face interactions among humans. I propose a scaling argument to explain the scaling exponent of these distributions, and test the argument in simple random-walk models of proximity interactions. I then study the honeybee society at the collective scale of the trophallaxis interaction network, and find that although bees exhibit bursty patterns of trophallaxis just as humans do in communication, the dynamics of simulated spreading on the trophallaxis networks is fast relative to randomized reference models, unlike in human temporal networks

    Endocrine, transcriptomic and social regulation of division of labor in honey bees

    Get PDF
    Division of labor is a central facet of complex societies. Task specialization by individual members of the society (theoretically) increases the overall productivity and the fitness of the group. The work presented in this dissertation extends existing knowledge about the regulation of task-related behavioral states at the level of the individual and social group by using the honeybee as a model organism. Chapter 1 reviews the extensive literature regarding the contribution of endocrine signaling (including endocrine-mediated transcriptional cascades) to division of labor in the social Hymenoptera. It also presents a theoretical framework for the evolution of division of labor via the cooption and neofunctionalization of endocrine-mediated signaling and transcription and suggests future lines of research to investigate these phenomena. Chapter 2 investigates the transcriptomic architecture underlying two of the tasks associated with division of labor (broodcare and foraging) using a novel combination of RNA sequencing and informatic analyses. In addition to identifying a key set of transcription factors (TFs) as putative regulators of broodcare or foraging behavior, it presents findings that suggest that coherent modules of coregulated genes are critical for task-related behavioral states. It thereby extends our understanding of how division of labor might be regulated at the transcriptomic level. Chapter 3 probes the regulatory logic underlying this architecture by investigating whether connections between TFs and their targets are labile. Using both bioinformatic analyses and RNAi coupled to behavioral assays and endocrine treatments, it presents significant evidence that the TF-target connectivity can be rewired as a function of behavioral state, social context and neuroendocrine state. This demonstrates how behavioral plasticity related to division of labor can arise at the transcriptomic level. Finally, Chapter 4 links division of labor to social networks involving trophallaxis (exchange of oral secretions and food). It shows that not only are task-related behaviors associated with differences in social interactivity, but that group-level social properties can be altered by hormone treatments that shift division of labor. Chapter 4 also demonstrates that certain emergent properties (such as information flow) are unaffected by such treatments and may represent core features of trophallactic communication in bees. As such, the findings presented in this chapter represent an important first step toward deciphering the role of direct communication in mediating division of labor

    Movement Decisions and Foraging Behaviour in Shoals of Fish The influence of internal and external stimuli

    Get PDF
    This thesis explores the mechanisms and functions of decision-making in groups, specifically in the context of social foraging in fish shoals. While many animal groups may seem homogeneous to the naked-eye, closer inspection reveals considerable heterogeneity, as they are composed of individuals with different phenotypes and different motivations living in stochastic, complex environments. The question then, is how do individual behavioural decisions change under varying internal and external conditions and what effect does this have on group level decision-making? How do animals address conflicts of interest and competition effects whilst ensuring benefits of group living are maintained? The approach taken in this thesis has been to address these questions from many angles, using a range of freshwater and marine species and employing an array of novel experimental set-ups. Of particular importance has been the utilization of automated, multi agent tracking software, which has allowed for the description of the movement and interaction of individually identified fish at a much finer scale than in the past. This project has direct significance to our understanding of the individual and group dynamics of social species, which is a central theme in behavioural ecology, and will inform researchers in a variety of fields from theoretical biology to sociological studies of human grouping patterns. The inclusion of internal nutritional state and external environmental factors into studies of group movement and decision-making in a foraging context is a practical way of linking the mechanistic forces behind individual behaviour to functional group-level responses. This will help expand our understanding of the evolutionary causes of group living and its ecological consequences, influencing conservation management plans and strategies to improve fisheries and aquacultural practices

    What does the honeybee see? And how do we know?

    Get PDF
    This book is the only account of what the bee, as an example of an insect, actually detects with its eyes. Bees detect some visual features such as edges and colours, but there is no sign that they reconstruct patterns or put together features to form objects. Bees detect motion but have no perception of what it is that moves, and certainly they do not recognize “things” by their shapes. Yet they clearly see well enough to fly and find food with a minute brain. Bee vision is therefore relevant to the construction of simple artificial visual systems, for example for mobile robots. The surprising conclusion is that bee vision is adapted to the recognition of places, not things. In this volume, Adrian Horridge also sets out the curious and contentious history of how bee vision came to be understood, with an account of a century of neglect of old experimental results, errors of interpretation, sharp disagreements, and failures of the scientific method. The design of the experiments and the methods of making inferences from observations are also critically examined, with the conclusion that scientists are often hesitant, imperfect and misleading, ignore the work of others, and fail to consider alternative explanations. The erratic path to understanding makes interesting reading for anyone with an analytical mind who thinks about the methods of science or the engineering of seeing machines

    Advanced Signal Processing Techniques Applied to Power Systems Control and Analysis

    Get PDF
    The work published in this book is related to the application of advanced signal processing in smart grids, including power quality, data management, stability and economic management in presence of renewable energy sources, energy storage systems, and electric vehicles. The distinct architecture of smart grids has prompted investigations into the use of advanced algorithms combined with signal processing methods to provide optimal results. The presented applications are focused on data management with cloud computing, power quality assessment, photovoltaic power plant control, and electrical vehicle charge stations, all supported by modern AI-based optimization methods

    Biologically Inspired Connected Advanced Driver Assistance Systems

    Get PDF
    Advanced Driver Assistance Systems (ADAS) have become commonplace in the automotive industry over the last few decades. Even with the advent of ADAS, however, there are still a significant number of accidents and fatalities. ADAS has in some instances been shown to significantly reduce the number and severity of accidents. Manufacturers are working to avoid ADAS plateauing for effectiveness, which has led the industry to pursue various avenues of investment to ascend the next mountain of challenges – vehicle autonomy, smart mobility, connectivity, and electrification – for reducing accidents and injuries. A number of studies pertaining to ADAS scrutinize a specific ADAS technology for its effectiveness at mitigating accidents and reducing injury severity. A few studies take holistic accounts of ADAS. There are a number of directions ADAS could be further progressed. Industry manufacturers are improving existing ADAS technologies through multiple avenues of technology advancement. A number of ADAS systems have already been improved from passive, alert or warning, systems to active systems which provide early warning and if no action is taken will control the vehicle to avoid a collision or reduce the impact of the collision. Studies about the individual ADAS technologies have found significant improvement for reduction in collisions, but when evaluating the actual vehicles driving the performance of ADAS has been fairly constant since 2015. At the same time, industry is looking at networking vehicle ADAS with fixed infrastructure or with other vehicles’ ADAS. The present literature surrounding connected ADAS be it with fixed systems or other vehicles with ADAS focuses on the why and the how information is passed between vehicles. The ultimate goal of ADAS and connected ADAS is the development of autonomous vehicles. Biologically inspired systems provide an intriguing avenue for examination by applying self-organization found in biological communities to connecting ADAS among vehicles and fixed systems. Biological systems developed over millions of years to become highly organized and efficient. Biological inspiration has been used with much success in several engineering and science disciplines to optimize processes and designs. Applying movement patterns found in nature to automotive transportation is a rational progression. This work strategizes how to further the effectiveness of ADAS through the connection of ADAS with supporting assets both fixed systems and other vehicles with ADAS based on biological inspiration. The connection priorities will be refined by the relative positioning of the assets interacting with a particular vehicle’s ADAS. Then based on the relative positioning data distribution among systems will be stratified based on level of relevance. This will reduce the processing time for incorporating the external data into the ADAS actions. This dissertation contributes to the present understanding of ADAS effectiveness in real-world situations and set forth a method for how to optimally connect local ADAS vehicles following from biological inspiration. Also, there will be a better understanding of how ADAS reduces accidents and injury severity. The method for how to structure an ADAS network will provide a framework for auto-manufacturers for the development of their proprietary networked ADAS. This method will lead to a new horizon for reducing accidents and injury severity through the design of connecting ADAS equipped vehicles.Ph.D

    Decentralized algorithm of dynamic task allocation for a swarm of homogeneous robots

    Get PDF
    The current trends in the robotics field have led to the development of large-scale swarm robot systems, which are deployed for complex missions. The robots in these systems must communicate and interact with each other and with their environment for complex task processing. A major problem for this trend is the poor task planning mechanism, which includes both task decomposition and task allocation. Task allocation means to distribute and schedule a set of tasks to be accomplished by a group of robots to minimize the cost while satisfying operational constraints. Task allocation mechanism must be run by each robot, which integrates the swarm whenever it senses a change in the environment to make sure the robot is assigned to the most appropriate task, if not, the robot should reassign itself to its nearest task. The main contribution in this thesis is to maximize the overall efficiency of the system by minimizing the total time needed to accomplish the dynamic task allocation problem. The near-optimal allocation schemes are found using a novel hybrid decentralized algorithm for a dynamic task allocation in a swarm of homogeneous robots, where the number of the tasks is more than the robots present in the system. This hybrid approach is based on both the Simulated Annealing (SA) optimization technique combined with the Discrete Particle Swarm Optimization (DPSO) technique. Also, another major contribution in this thesis is the formulation of the dynamic task allocation equations for the homogeneous swarm robotics using integer linear programming and the cost function and constraints are introduced for the given problem. Then, the DPSO and SA algorithms are developed to accomplish the task in a minimal time. Simulation is implemented using only two test cases via MATLAB. Simulation results show that PSO exhibits a smaller and more stable convergence characteristics and SA technique owns a better quality solution. Then, after developing the hybrid algorithm, which combines SA with PSO, simulation instances are extended to include fifteen more test cases with different swarm dimensions to ensure the robustness and scalability of the proposed algorithm over the traditional PSO and SA optimization techniques. Based on the simulation results, the hybrid DPSO/SA approach proves to have a higher efficiency in both small and large swarm sizes than the other traditional algorithms such as Particle Swarm Optimization technique and Simulated Annealing technique. The simulation results also demonstrate that the proposed approach can dislodge a state from a local minimum and guide it to the global minimum. Thus, the contributions of the proposed hybrid DPSO/SA algorithm involve possessing both the pros of high quality solution in SA and the fast convergence time capability in PSO. Also, a parameters\u27 selection process for the hybrid algorithm is proposed as a further contribution in an attempt to enhance the algorithm efficiency because the heuristic optimization techniques are very sensitive to any parameter changes. In addition, Verification is performed to ensure the effectiveness of the proposed algorithm by comparing it with results of an exact solver in terms of computational time, number of iterations and quality of solution. The exact solver that is used in this research is the Hungarian algorithm. This comparison shows that the proposed algorithm gives a superior performance in almost all swarm sizes with both stable and small execution time. However, it also shows that the proposed hybrid algorithm\u27s cost values which is the distance traveled by the robots to perform the tasks are larger than the cost values of the Hungarian algorithm but the execution time of the hybrid algorithm is much better. Finally, one last contribution in this thesis is that the proposed algorithm is implemented and extensively tested in a real experiment using a swarm of 4 robots. The robots that are used in the real experiment called Elisa-III robots

    Space-Time Continuous Models of Swarm Robotic Systems: Supporting Global-to-Local Programming

    Get PDF
    A generic model in as far as possible mathematical closed-form was developed that predicts the behavior of large self-organizing robot groups (robot swarms) based on their control algorithm. In addition, an extensive subsumption of the relatively young and distinctive interdisciplinary research field of swarm robotics is emphasized. The connection to many related fields is highlighted and the concepts and methods borrowed from these fields are described shortly
    corecore