678 research outputs found

    Light attenuation characteristics of glacially-fed lakes

    Get PDF
    Transparency is a fundamental characteristic of aquatic ecosystems and is highly responsive to changes in climate and land use. The transparency of glacially-fed lakes may be a particularly sensitive sentinel characteristic of these changes. However, little is known about the relative contributions of glacial flour versus other factors affecting light attenuation in these lakes. We sampled 18 glacially-fed lakes in Chile, New Zealand, and the U.S. and Canadian Rocky Mountains to characterize how dissolved absorption, algal biomass (approximated by chlorophyll a), water, and glacial flour contributed to attenuation of ultraviolet radiation (UVR) and photosynthetically active radiation (PAR, 400–700 nm). Variation in attenuation across lakes was related to turbidity, which we used as a proxy for the concentration of glacial flour. Turbidity-specific diffuse attenuation coefficients increased with decreasing wavelength and distance from glaciers. Regional differences in turbidity-specific diffuse attenuation coefficients were observed in short UVR wavelengths (305 and 320 nm) but not at longer UVR wavelengths (380 nm) or PAR. Dissolved absorption coefficients, which are closely correlated with diffuse attenuation coefficients in most non-glacially-fed lakes, represented only about one quarter of diffuse attenuation coefficients in study lakes here, whereas glacial flour contributed about two thirds across UVR and PAR. Understanding the optical characteristics of substances that regulate light attenuation in glacially-fed lakes will help elucidate the signals that these systems provide of broader environmental changes and forecast the effects of climate change on these aquatic ecosystems

    Feasibility Study for an Aquatic Ecosystem Earth Observing System Version 1.2.

    Get PDF
    International audienceMany Earth observing sensors have been designed, built and launched with primary objectives of either terrestrial or ocean remote sensing applications. Often the data from these sensors are also used for freshwater, estuarine and coastal water quality observations, bathymetry and benthic mapping. However, such land and ocean specific sensors are not designed for these complex aquatic environments and consequently are not likely to perform as well as a dedicated sensor would. As a CEOS action, CSIRO and DLR have taken the lead on a feasibility assessment to determine the benefits and technological difficulties of designing an Earth observing satellite mission focused on the biogeochemistry of inland, estuarine, deltaic and near coastal waters as well as mapping macrophytes, macro-algae, sea grasses and coral reefs. These environments need higher spatial resolution than current and planned ocean colour sensors offer and need higher spectral resolution than current and planned land Earth observing sensors offer (with the exception of several R&D type imaging spectrometry satellite missions). The results indicate that a dedicated sensor of (non-oceanic) aquatic ecosystems could be a multispectral sensor with ~26 bands in the 380-780 nm wavelength range for retrieving the aquatic ecosystem variables as well as another 15 spectral bands between 360-380 nm and 780-1400 nm for removing atmospheric and air-water interface effects. These requirements are very close to defining an imaging spectrometer with spectral bands between 360 and 1000 nm (suitable for Si based detectors), possibly augmented by a SWIR imaging spectrometer. In that case the spectral bands would ideally have 5 nm spacing and Full Width Half Maximum (FWHM), although it may be necessary to go to 8 nm wide spectral bands (between 380 to 780nm where the fine spectral features occur -mainly due to photosynthetic or accessory pigments) to obtain enough signal to noise. The spatial resolution of such a global mapping mission would be between ~17 and ~33 m enabling imaging of the vast majority of water bodies (lakes, reservoirs, lagoons, estuaries etc.) larger than 0.2 ha and ~25% of river reaches globally (at ~17 m resolution) whilst maintaining sufficient radiometric resolution

    Hyperspectral remote sensing of cyanobacterial pigments as indicators for cell populations and toxins in eutrophic lakes

    Get PDF
    The growth of mass populations of toxin-producing cyanobacteria is a serious concern for the ecological status of inland waterbodies and for human and animal health. In this study we examined the performance of four semi-analytical algorithms for the retrieval of chlorophyll a (Chl a) and phycocyanin (C-PC) from data acquired by the Compact Airborne Spectrographic Imager-2 (CASI-2) and the Airborne Imaging Spectrometer for Applications (AISA) Eagle sensor. The retrieval accuracies of the semi-analytical models were compared to those returned by optimally calibrated empirical band-ratio algorithms. The best-performing algorithm for the retrieval of Chl a was an empirical band-ratio model based on a quadratic function of the ratio of re!ectance at 710 and 670 nm (R2=0.832; RMSE=29.8%). However, this model only provided a marginally better retrieval than the best semi-analytical algorithm. The best-performing model for the retrieval of C-PC was a semi-analytical nested band-ratio model (R2=0.984; RMSE=3.98 mg m−3). The concentrations of C-PC retrieved using the semi-analytical model were correlated with cyanobacterial cell numbers (R2=0.380) and the particulate and total (particulate plus dissolved) pools of microcystins (R2=0.858 and 0.896 respectively). Importantly, both the empirical and semi-analytical algorithms were able to retrieve the concentration of C-PC at cyanobacterial cell concentrations below current warning thresholds for cyanobacteria in waterbodies. This demonstrates the potential of remote sensing to contribute to early-warning detection and monitoring of cyanobacterial blooms for human health protection at regional and global scales

    Optiliste veetĂŒĂŒpide pĂ”hine lĂ€henemine sise- ja rannikuvee veekvaliteedi hindamiseks

    Get PDF
    VĂ€itekirja elektrooniline versioon ei sisalda publikatsiooneInimestele on meeldinud ajast aega elada seal, kus maa ja vesi kohtuvad. MistĂ”ttu on jĂ€rvede, jĂ”gede ja rannikualade lĂ€hedal inimtegevuse mĂ”ju suurenenud, mis omakorda pĂ”hjustab veekogude seisundi muutumist ning loob vajaduse veekogude operatiivseks seireks. Enamasti pĂ”hinevad veekogude seireprogrammid veekogudes teostatud punktmÔÔtmistel. See meetod aga ei suuda kajastada kogu veekogu kiiresti muutuvaid omadusi ja reaalset seisundit. SeetĂ”ttu on oluline lisaks punktmÔÔtmistele rakendada veekeskkonna operatiivse jĂ€lgimise meetodeid, millest kaugseire on ĂŒks vĂ”imsamaid. Kaugseire pakub tĂ”husaid viise veekvaliteedi ruumiliste ja ajaliste erinevuste jĂ€lgimiseks. Euroopa Liidu ja Euroopa Kosmoseagentuuri Copernicus programmi raames loodud Sentinel-2 ja Sentinel-3 seeria satelliitide hea ruumilise, ajalise ja spektraalse lahutusega andmete tasuta kĂ€ttesaadavus on loonud reaalse vĂ”imaluse sise- ja rannikuvete seires operatiivselt kasutada tĂ€iendavalt satelliitandmeid. Need andmed vĂ”imaldavad jĂ€lgida kogu veekogu ajalist ja ruumilist muutlikkust ning seirata ka raskesti ligipÀÀsetavaid veekogusid. Sise- ja rannikuveed on optiliselt keerukad, sest vee optilised omadused on mĂ”jutatud sĂ”ltumatult erinevate optiliselt aktiivsete ainete poolt. SeetĂ”ttu standardsed kaugseire algoritmid veekvaliteedi hindamiseks neis veekogudes tihti ei tööta. Doktoritöö tulemusena tutvustati optiliste veetĂŒĂŒpide pĂ”hist lĂ€henemist sise- ja rannikuvete veekvaliteedi parameetrite hindamiseks kaugseireandmete pĂ”hjal. Eelnimetatud meetod vĂ”tab arvesse vee optilisi omadusi ega piiritle ennast konkreetse veekoguga, seetĂ”ttu on tulemused rakendatavad kĂ”igil sarnaste optiliste omadustega veekogudel ĂŒle maailma.Humans have long enjoyed living where land and water meet. At the same time, the impact of human activities close to lakes, rivers, and coastal areas has increased, which has caused the deterioration of water bodies. Therefore, the state of a water body requires constant monitoring to assess the magnitude of the impact of human activity and to respond when needed. Traditional water monitoring programs are mainly based on in situ measurements; however, considering that water bodies are dynamic in nature, this method may not reflect the status of the whole water body. Therefore, in addition to traditional monitoring, it is important to implement methods that allow more operative monitoring of the aquatic environment. Remote sensing offers effective ways to observe spatial and temporal variations in water quality. The free availability of data with high spatial, temporal and spectral resolution from the Sentinel-2 and Sentinel-3 family satellites launched under the European Union and the European Space Agency Copernicus programme has created a real opportunity for satellite data being used operationally for additional water quality monitoring for inland and coastal waters. Such waters are optically complex, as they are independently influenced by different optically significant constituents. Therefore, standard remote sensing algorithms to estimate water quality often fail in these waters. As a result of the thesis, an optical water type guided approach to estimate water quality in inland and coastal waters using remote sensing data was presented. The method considers the optical properties of water but does not limit itself to a particular water body. So, results are applicable to all the water bodies with similar optical properties of water.https://www.ester.ee/record=b534022

    Detection and Monitoring of Marine Pollution Using Remote Sensing Technologies

    Get PDF
    Recently, the marine habitat has been under pollution threat, which impacts many human activities as well as human life. Increasing concerns about pollution levels in the oceans and coastal regions have led to multiple approaches for measuring and mitigating marine pollution, in order to achieve sustainable marine water quality. Satellite remote sensing, covering large and remote areas, is considered useful for detecting and monitoring marine pollution. Recent developments in sensor technologies have transformed remote sensing into an effective means of monitoring marine areas. Different remote sensing platforms and sensors have their own capabilities for mapping and monitoring water pollution of different types, characteristics, and concentrations. This chapter will discuss and elaborate the merits and limitations of these remote sensing techniques for mapping oil pollutants, suspended solid concentrations, algal blooms, and floating plastic waste in marine waters

    Optimization and Demonstration of In Situ Chemical Sensors for Marine Waters

    Get PDF
    The importance of autonomous in situ chemical sensors for ocean observations has increased drastically over the last decades. Yet, the huge potentials of sensor-based data collection remain underutilized by the scientific and regulatory communities, despite wider than ever usage of sensors. This thesis is part of a growing body of work to extend the usability of sensors and is embedded in the Ocean Best Practice approach, which could improve data quality in ocean observation in general. The here presented Ph.D. thesis covers multiple commercial sensors (LOC from ClearWater Sensors, Southampton, UK and OPUS from TriOS GmbH, Germany) for autonomous, high-resolution and in situ measurements of essential biogeochemical parameters (pH and nitrate) in marine waters. It was motivated by the necessity of improving the data quality of autonomous submersible optical sensors and broadening their utility. To achieve this, sensor deployments in various aquatic environments were conducted. Furthermore, the data obtained via sensors based on the same analytical principle was compared with each other, and with benchtop laboratory devices to assess the accuracy of the measurements. The achievements are associated with the acquisition of accurate and temporally well-resolved real-time data. A more reliable sensor-based data collection and improved deployability promotes a broader usage of autonomous sensors in general. Thus, a financially more sustainable ocean monitoring approach can be achieved, since a broader adaptation of autonomous sensors in research yields a higher cost efficiency

    The Use of Landsat 8 for Monitoring of Fresh and Coastal Waters

    Get PDF
    The most interaction between humankind and water occurs in coastal and inland waters (Case 2 waters) at a scale of tens or hundred of meters, but there is not yet an ocean color product (e.g. chlorophyll-a product) at this spatial scale. Landsat 8 could potentially address the remote sensing of these kinds of waters due to its improved features. This work presents an approach to obtain the color producing agents (CPAs) chlorophyll-a, colored dissolved organic material (CDOM) and suspended material (SM) from water bodies using Landsat 8. Adequate atmospheric correction becomes an important first step to accurately retrieving water parameters since the sensor-reaching signal due to water is very small when compared to the signal due to the atmospheric effects. We developed the model-based empirical line method (MoB-ELM) atmospheric correction method. The Mob-ELM employs pseudo invariant feature (PIF) pixels extracted from a reflectance product along with the in-water radiative transfer model HydroLight. We used a look-up-table-based (LUT-based) inversion methodology to simultaneously retrieve CPAs. The LUT of remote-sensing reflectance spectra was created in Hydrolight using inherent optical properties (IOPs) measured in the field. The retrieval algorithm was applied over three Landsat 8 scenes. The CPA concentration maps exhibit expected trends of low concentrations in clear waters and higher concentrations in turbid waters. We estimated a normalized root mean squared error (NRMSE) of about 14% for Chlorophyll-a, 11% for the total suspended solid (TSS), and 7% for colored dissolved organic matter (CDOM) when compared with in situ data. These results demonstrate that the developed algorithm allows the simultaneous mapping of concentration of all CPAs in Case 2 waters and over areas where the standard algorithms are not available due to spatial resolution. Therefore, this study shows that the Landsat 8 satellite can be utilized over Case 2 waters as long as a careful atmospheric correction is applied and IOPs are known
    • 

    corecore