1,073 research outputs found

    Updates in metabolomics tools and resources: 2014-2015

    Get PDF
    Data processing and interpretation represent the most challenging and time-consuming steps in high-throughput metabolomic experiments, regardless of the analytical platforms (MS or NMR spectroscopy based) used for data acquisition. Improved machinery in metabolomics generates increasingly complex datasets that create the need for more and better processing and analysis software and in silico approaches to understand the resulting data. However, a comprehensive source of information describing the utility of the most recently developed and released metabolomics resources—in the form of tools, software, and databases—is currently lacking. Thus, here we provide an overview of freely-available, and open-source, tools, algorithms, and frameworks to make both upcoming and established metabolomics researchers aware of the recent developments in an attempt to advance and facilitate data processing workflows in their metabolomics research. The major topics include tools and researches for data processing, data annotation, and data visualization in MS and NMR-based metabolomics. Most in this review described tools are dedicated to untargeted metabolomics workflows; however, some more specialist tools are described as well. All tools and resources described including their analytical and computational platform dependencies are summarized in an overview Table

    The metaRbolomics Toolbox in Bioconductor and beyond

    Get PDF
    Metabolomics aims to measure and characterise the complex composition of metabolites in a biological system. Metabolomics studies involve sophisticated analytical techniques such as mass spectrometry and nuclear magnetic resonance spectroscopy, and generate large amounts of high-dimensional and complex experimental data. Open source processing and analysis tools are of major interest in light of innovative, open and reproducible science. The scientific community has developed a wide range of open source software, providing freely available advanced processing and analysis approaches. The programming and statistics environment R has emerged as one of the most popular environments to process and analyse Metabolomics datasets. A major benefit of such an environment is the possibility of connecting different tools into more complex workflows. Combining reusable data processing R scripts with the experimental data thus allows for open, reproducible research. This review provides an extensive overview of existing packages in R for different steps in a typical computational metabolomics workflow, including data processing, biostatistics, metabolite annotation and identification, and biochemical network and pathway analysis. Multifunctional workflows, possible user interfaces and integration into workflow management systems are also reviewed. In total, this review summarises more than two hundred metabolomics specific packages primarily available on CRAN, Bioconductor and GitHub

    From spectrometric data to metabolic networks: an integrated view of cell metabolism

    Get PDF
    La biologia molecular ha avançat considerablement gràcies a importants progressos com la seqüenciació del ADN o la seva modificació per CRISPR. Tot i això, per entendre el metabolisme requerim estudiar els perfils metabòlics i les seves reaccions metabòliques. L™objectiu d™aquesta tesi és contribuir en aquest estudi del metabolism, el qual unifica dels camps de la proteòmica i la metabolòmica. Tradicionalment, l™anàlisi de dades òmiques es basa en el tractament independent de les diferents variables encara que està profundament establert que els mecanismes moleculars són controlats per la interacció de diferents molècules, i per tant seria més correcte tractar les dades de la mateixa manera. Avui dia, s™han descrit una gran quantitat de vies metabòliques, incluint els enzims responsables de les transformacions dels metabòlits que les formen, aquesta informació s™ha recopilat en bases de dades, que a la vegada poden ser utilitzades per a construir xarxes metabòliques. En aquesta tesi, s™han utilitzat xarxes metabòliques per a desenvolupar un algoritme que prediu metabòlits desregulats basant-se en el perfil d™expressió d™enzims gràcies a proteòmica quantitativa. Per a validar tals prediccions, és possible mesurar l™abundància d™aquests metabòlits, o el seu flux, o sigui la velocitat a la que s™han transformat, utilitzant experiments de marcatge amb isòtops estables, mesures completades mitjançant metabolòmica. Aqui, mostrem els productes del desenvolupament de dos mètodes per a l™anàlisi de dades de metabolòmica per a experiments amb isòtops estables: el primer per a la quantificació dirigida del flux en metabòlits del metabolisme central; i un segon, per la detecció no-dirigida de metabòlits marcats amb isòtops en altres vies metabòliques. Aquests mètodes han sigut provats en diferents estudis on han aportat resultats remarcables, revelant nous mecanismes moleculars en una complicació de la diabetes o en relació al metabolisme del càncer.La biología molecular ha avanzado considerablemente gracias a progresos como la secuenciación de ADN o su modificación por CRISPR. Sin embargo, para entender el metabolismo es indispensable estudiar los perfiles metabólicos y sus reacciones metabólicas. El objetivo de esta tesis es contribuir en el estudio del metabolismo, el cual implica los campos de la proteómica y la metabolómica. Tradicionalmente, el análisis de datos ómicas se basa en el tratamiento independiente de las diferentes variables aunque está profundamente aceptado que los mecanismos moleculares son controlados por la interacción de diferentes moléculas, y por lo tanto sería más correcto tratar los datos de esa manera. Hoy día, se han descrito una gran cantidad de vías metabólicas, incluyendo las enzimas responsables de las transformaciones de los metabolitos que las forman, esta información se ha recopilado en bases de datos, que a su vez pueden ser utilizadas para construir redes metabólicas . En esta tesis, se han utilizado redes metabólicas para desarrollar un algoritmo que predice metabolitos desregulados basándose en el perfil de expresión de enzimas por proteómica cuantitativa. Para validar tales predicciones, es posible medir la abundancia de estos metabolitos, o su flujo, o sea la velocidad a la que se han transformado, utilizando experimentos de marcado con isótopos estables, estas medidas se obtienen por metabolómica. Aquí, mostramos los productos del desarrollo de dos métodos para el análisis de datos de metabolómica para experimentos con isótopos estables: el primero para la cuantificación dirigida del flujo en metabolitos del metabolismo central; y un segundo, para la detección no-dirigida de metabolitos marcados con isótopos en otras vías metabólicas. Estos métodos han sido probados en diferentes estudios donde han aportado resultados interesantes, revelando nuevos mecanismos moleculares en una complicación de la diabetes o en relación al metabolismo del cáncer.Understanding the molecular basis of life has been in the spotlight of biochemistry research for more than a century already. Molecular biology has taken medicine forward thanks to technological breakthroughs like DNA sequencing and CRISPR editing. However, in order to understand metabolism we must rely on the study of metabolite profiles and metabolic reactions. The purpose of this thesis to contribute to this area, which unites the fields of proteomics and metabolomics. Traditionally, omics data analysis treats variables independently even if it is strongly settled that molecular mechanisms involve the interaction of diverse pathways, therefore data should be analyzed correspondingly. A vast amount of metabolic pathways have been described, together with enzymes that are responsible for metabolite transformations, this information has been assembled in databases that, in turn, can be used to build metabolic networks. In here, we use metabolic networks to predict metabolite dysregulation based on quantitative proteomics profiles. To validate the predictions, it is possible to measure the abundance of metabolites or their flux, namely the rate at which they are transformed, using stable isotope labelling experiments, both measurements can be performed by metabolomics. In this thesis, two different metabolomics-based stable isotope labelling approaches have been developed, one for the study of central carbon metabolites and one for the unbiased detection of deregulated fluxes in other metabolic pathways. These approaches have been tested on different datasets and have proven valuable to obtain remarkable results, unraveling molecular mechanisms in diabetes complications or novel metabolic hallmarks of cancer

    The metaRbolomics Toolbox in Bioconductor and beyond

    Get PDF
    Metabolomics aims to measure and characterise the complex composition of metabolites in a biological system. Metabolomics studies involve sophisticated analytical techniques such as mass spectrometry and nuclear magnetic resonance spectroscopy, and generate large amounts of high-dimensional and complex experimental data. Open source processing and analysis tools are of major interest in light of innovative, open and reproducible science. The scientific community has developed a wide range of open source software, providing freely available advanced processing and analysis approaches. The programming and statistics environment R has emerged as one of the most popular environments to process and analyse Metabolomics datasets. A major benefit of such an environment is the possibility of connecting different tools into more complex workflows. Combining reusable data processing R scripts with the experimental data thus allows for open, reproducible research. This review provides an extensive overview of existing packages in R for different steps in a typical computational metabolomics workflow, including data processing, biostatistics, metabolite annotation and identification, and biochemical network and pathway analysis. Multifunctional workflows, possible user interfaces and integration into workflow management systems are also reviewed. In total, this review summarises more than two hundred metabolomics specific packages primarily available on CRAN, Bioconductor and GitHub

    Computational Methods for the Differential Profiling of Triacylglycerols Using RP-HPLC/APCI-MS

    Get PDF
    Reversed phase liquid chromatography with atmospheric pressure chemical ionization mass spectrometry (RP-HPLC/APCI-MS) was employed for the analysis of natural mixtures of triacylglycerols. An integrated framework for data analysis, including preprocessing, statistical analysis and automated structure identification, was implemented in the R statistical program. Raw data stored as mzXML, mzData, or mzXML files are preprocessed using a series of steps for peak detection, chromatographic alignment, and normalization. Targeted and non-targeted feature selection steps are employed to filter the data for features that are relevant and informative for a particular biological question. Triacylglycerol structures are identified by evaluating relationships between the diacylglycerol fragment ions and protonated molecules observed in APCI mass spectra, and suggested structures are evaluated using a correlation-based score that reflects whether structure-associated ions are concurrently eluting over the retention-time course of the analysis. The algorithm was tested using five soybean oils and triacylglycerol structure identifications were verified from literature references. We employed the developed methodology for classification of plant oils and marine oils to their biological source, and also to determine structural differences in triacylglycerols in adipose tissue from mice fed different high-fat diets in studies of diet-induced obesity

    Principal Component Analysis in the Era of «Omics» Data

    Get PDF

    Using R and Bioconductor for proteomics data analysis.

    Get PDF
    This review presents how R, the popular statistical environment and programming language, can be used in the frame of proteomics data analysis. A short introduction to R is given, with special emphasis on some of the features that make R and its add-on packages premium software for sound and reproducible data analysis. The reader is also advised on how to find relevant R software for proteomics. Several use cases are then presented, illustrating data input/output, quality control, quantitative proteomics and data analysis. Detailed code and additional links to extensive documentation are available in the freely available companion package RforProteomics. This article is part of a Special Issue entitled: Computational Proteomics in the Post-Identification Era. Guest Editors: Martin Eisenacher and Christian Stephan
    • …
    corecore