6 research outputs found

    Design and debugging of multi-step analog to digital converters

    Get PDF
    With the fast advancement of CMOS fabrication technology, more and more signal-processing functions are implemented in the digital domain for a lower cost, lower power consumption, higher yield, and higher re-configurability. The trend of increasing integration level for integrated circuits has forced the A/D converter interface to reside on the same silicon in complex mixed-signal ICs containing mostly digital blocks for DSP and control. However, specifications of the converters in various applications emphasize high dynamic range and low spurious spectral performance. It is nontrivial to achieve this level of linearity in a monolithic environment where post-fabrication component trimming or calibration is cumbersome to implement for certain applications or/and for cost and manufacturability reasons. Additionally, as CMOS integrated circuits are accomplishing unprecedented integration levels, potential problems associated with device scaling – the short-channel effects – are also looming large as technology strides into the deep-submicron regime. The A/D conversion process involves sampling the applied analog input signal and quantizing it to its digital representation by comparing it to reference voltages before further signal processing in subsequent digital systems. Depending on how these functions are combined, different A/D converter architectures can be implemented with different requirements on each function. Practical realizations show the trend that to a first order, converter power is directly proportional to sampling rate. However, power dissipation required becomes nonlinear as the speed capabilities of a process technology are pushed to the limit. Pipeline and two-step/multi-step converters tend to be the most efficient at achieving a given resolution and sampling rate specification. This thesis is in a sense unique work as it covers the whole spectrum of design, test, debugging and calibration of multi-step A/D converters; it incorporates development of circuit techniques and algorithms to enhance the resolution and attainable sample rate of an A/D converter and to enhance testing and debugging potential to detect errors dynamically, to isolate and confine faults, and to recover and compensate for the errors continuously. The power proficiency for high resolution of multi-step converter by combining parallelism and calibration and exploiting low-voltage circuit techniques is demonstrated with a 1.8 V, 12-bit, 80 MS/s, 100 mW analog to-digital converter fabricated in five-metal layers 0.18-µm CMOS process. Lower power supply voltages significantly reduce noise margins and increase variations in process, device and design parameters. Consequently, it is steadily more difficult to control the fabrication process precisely enough to maintain uniformity. Microscopic particles present in the manufacturing environment and slight variations in the parameters of manufacturing steps can all lead to the geometrical and electrical properties of an IC to deviate from those generated at the end of the design process. Those defects can cause various types of malfunctioning, depending on the IC topology and the nature of the defect. To relive the burden placed on IC design and manufacturing originated with ever-increasing costs associated with testing and debugging of complex mixed-signal electronic systems, several circuit techniques and algorithms are developed and incorporated in proposed ATPG, DfT and BIST methodologies. Process variation cannot be solved by improving manufacturing tolerances; variability must be reduced by new device technology or managed by design in order for scaling to continue. Similarly, within-die performance variation also imposes new challenges for test methods. With the use of dedicated sensors, which exploit knowledge of the circuit structure and the specific defect mechanisms, the method described in this thesis facilitates early and fast identification of excessive process parameter variation effects. The expectation-maximization algorithm makes the estimation problem more tractable and also yields good estimates of the parameters for small sample sizes. To allow the test guidance with the information obtained through monitoring process variations implemented adjusted support vector machine classifier simultaneously minimize the empirical classification error and maximize the geometric margin. On a positive note, the use of digital enhancing calibration techniques reduces the need for expensive technologies with special fabrication steps. Indeed, the extra cost of digital processing is normally affordable as the use of submicron mixed signal technologies allows for efficient usage of silicon area even for relatively complex algorithms. Employed adaptive filtering algorithm for error estimation offers the small number of operations per iteration and does not require correlation function calculation nor matrix inversions. The presented foreground calibration algorithm does not need any dedicated test signal and does not require a part of the conversion time. It works continuously and with every signal applied to the A/D converter. The feasibility of the method for on-line and off-line debugging and calibration has been verified by experimental measurements from the silicon prototype fabricated in standard single poly, six metal 0.09-µm CMOS process

    Digital Background Self-Calibration Technique for Compensating Transition Offsets in Reference-less Flash ADCs

    Get PDF
    This Dissertation focusses on proving that background calibration using adaptive algorithms are low-cost, stable and effective methods for obtaining high accuracy in flash A/D converters. An integrated reference-less 3-bit flash ADC circuit has been successfully designed and taped out in UMC 180 nm CMOS technology in order to prove the efficiency of our proposed background calibration. References for ADC transitions have been virtually implemented built-in in the comparators dynamic-latch topology by a controlled mismatch added to each comparator input front-end. An external very simple DAC block (calibration bank) allows control the quantity of mismatch added in each comparator front-end and, therefore, compensate the offset of its effective transition with respect to the nominal value. In order to assist to the estimation of the offset of the prototype comparators, an auxiliary A/D converter with higher resolution and lower conversion speed than the flash ADC is used: a 6-bit capacitive-DAC SAR type. Special care in synchronization of analogue sampling instant in both ADCs has been taken into account. In this thesis, a criterion to identify the optimum parameters of the flash ADC design with adaptive background calibration has been set. With this criterion, the best choice for dynamic latch architecture, calibration bank resolution and flash ADC resolution are selected. The performance of the calibration algorithm have been tested, providing great programmability to the digital processor that implements the algorithm, allowing to choose the algorithm limits, accuracy and quantization errors in the arithmetic. Further, systematic controlled offset can be forced in the comparators of the flash ADC in order to have a more exhaustive test of calibration

    Energy-efficient analog-to-digital conversion for ultra-wideband radio

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.Includes bibliographical references (p. 207-222).In energy constrained signal processing and communication systems, a focus on the analog or digital circuits in isolation cannot achieve the minimum power consumption. Furthermore, in advanced technologies with significant variation, yield is traditionally achieved only through conservative design and a sacrifice of energy efficiency. In this thesis, these limitations are addressed with both a comprehensive mixed-signal design methodology and new circuits and architectures, as presented in the context of an analog-to-digital converter (ADC) for ultra-wideband (UWB) radio. UWB is an emerging technology capable of high-data-rate wireless communication and precise locationing, and it requires high-speed (>500MS/s), low-resolution ADCs. The successive approximation register (SAR) topology exhibits significantly reduced complexity compared to the traditional flash architecture. Three time-interleaved SAR ADCs have been implemented. At the mixed-signal optimum energy point, parallelism and reduced voltage supplies provide more than 3x energy savings. Custom control logic, a new capacitive DAC, and a hierarchical sampling network enable the high-speed operation. Finally, only a small amount of redundancy, with negligible power penalty, dramatically improves the yield of the highly parallel ADC in deep sub-micron CMOS.by Brian P. Ginsburg.Ph.D

    Compensation numérique pour convertisseur large bande hautement parallélisé.

    Get PDF
    Time-interleaved analog-to-digital converters (TIADC) seem to be the holy grail of analog-to-digital conversion. Theoretically, their sampling speed can be increased, very simply, by duplicating the sub-converters. The real world is different because mismatches between the converters strongly reduce the TIADC performance, especially when trying to push forward the sampling speed, or the resolution of the converter. Using background digital mismatch calibration can alleviate this limitation. The first part of the thesis is dedicated to studying the sources and effects of mismatches in a TIADC. Performance metrics such as the SNDR and the SFDR are derived as a function of the mismatch levels. In the second part, new background digital mismatch calibration techniques are presented. They are able to reduce the offset, gain, skew and bandwidth mismatch errors. The mismatches are estimated by using the statistical properties of the input signal and digital filters are used to reconstruct the correct output samples. In the third part, a 1.6 GS/s TIADC circuit, implementing offset, gain and skew mismatch calibration, demonstrates a reduction of the mismatch spurs down to a level of -70 dBFS, up to an input frequency of 750 MHz. The circuit achieves the lowest level of mismatches among TIADCs in the same frequency range, with a reasonable power and area, in spite of the overhead caused by the calibration.Les convertisseurs analogique-numérique à entrelacement temporel (TIADC) semblent être une solution prometteuse dans le monde de la conversion analogique-numérique. Leur fréquence d’échantillonnage peut théoriquement être augmentée en augmentant le nombre de convertisseurs en parallèle. En réalité, des désappariements entre les convertisseurs peuvent fortement dégrader les performances, particulièrement à haute fréquence d’échantillonnage ou à haute résolution. Ces défauts d’appariement peuvent être réduits en utilisant des techniques de calibration en arrière-plan. La première partie de cette thèse est consacrée à l’étude des sources et effets des différents types de désappariements dans un TIADC. Des indicateurs de performance tels que le SNDR ou la SFDR sont exprimés en fonction du niveau des désappariements. Dans la deuxième partie, des nouvelles techniques de calibration sont proposées. Ces techniques permettent de réduire les effets des désappariements d’offset, de gain, d’instant d’échantillonnage et de bande passante. Les désappariements sont estimés en se basant sur des propriétés statistiques du signal et la reconstruction des échantillons de sortie se fait en utilisant des filtres numériques. La troisième partie démontre les performance d’un TIADC fonctionnant a une fréquence d’échantillonnage de 1.6 GE/s et comprenant les calibration d’offset, de gain et d’instant d’échantillonnage proposées. Les raies fréquentielles dues aux désappariements sont réduites à un niveau de -70dBc jusqu’à une fréquence d’entrée de 750 MHz. Ce circuit démontre une meilleure correction de désappariements que des circuits similaires récemment publiés, et ce avec une augmentation de puissance consommée et de surface relativement faible

    Calibrated Continuous-Time Sigma-Delta Modulators

    Get PDF
    To provide more information mobility, many wireless communication systems such as WCDMA and EDGE in phone systems, bluetooth and WIMAX in communication networks have been recently developed. Recent efforts have been made to build the allin- one next generation device which integrates a large number of wireless services into a single receiving path in order to raise the competitiveness of the device. Among all the receiver architectures, the high-IF receiver presents several unique properties for the next generation receiver by digitalizing the signal at the intermediate frequency around a few hundred MHz. In this architecture, the modulation/demodulation schemes, protocols, equalization, etc., are all determined in a software platform that runs in the digital signal processor (DSP) or FPGA. The specifications for most of front-end building blocks are relaxed, except the analog-to-digital converter (ADC). The requirements of large bandwidth, high operational frequency and high resolution make the design of the ADC very challenging. Solving the bottleneck associated with the high-IF receiver architecture is a major focus of many ongoing research efforts. In this work, a 6th-order bandpass continuous time sigma-delta ADC with measured 68.4dB SNDR at 10MHz bandwidth to accommodate video applications is proposed. Tuned at 200 MHz, the fs/4 architecture employs an 800 MHz clock frequency. By making use of a unique software-based calibration scheme together with the tuning properties of the bandpass filters developed under the umbrella of this project, the ADC performance is optimized automatically to fulfill all requirements for the high-IF architecture. In a separate project, other critical design issues for continuous-time sigma-delta ADCs are addressed, especially the issues related to unit current source mismatches in multi-level DACs as well as excess loop delays that may cause loop instability. The reported solutions are revisited to find more efficient architectures. The aforementioned techniques are used for the design of a 25MHz bandwidth lowpass continuous-time sigma-delta modulator with time-domain two-step 3-bit quantizer and DAC for WiMAX applications. The prototype is designed by employing a level-to-pulse-width modulation (PWM) converter followed by a single-level DAC in the feedback path to translate the typical digital codes into PWM signals with the proposed pulse arrangement. Therefore, the non-linearity issue from current source mismatch in multi-level DACs is prevented. The jitter behavior and timing mismatch issue of the proposed time-based methods are fully analyzed. The measurement results of a chip prototype achieving 67.7dB peak SNDR and 78dB SFDR in 25MHz bandwidth properly demonstrate the design concepts and effectiveness of time-based quantization and feedback. Both continuous-time sigma-delta ADCs were fabricated in mainstream CMOS 0.18um technologies, which are the most popular in today?s consumer electronics industry

    Development of Robust Analog and Mixed-Signal Circuits in the Presence of Process- Voltage-Temperature Variations

    Get PDF
    Continued improvements of transceiver systems-on-a-chip play a key role in the advancement of mobile telecommunication products as well as wireless systems in biomedical and remote sensing applications. This dissertation addresses the problems of escalating CMOS process variability and system complexity that diminish the reliability and testability of integrated systems, especially relating to the analog and mixed-signal blocks. The proposed design techniques and circuit-level attributes are aligned with current built-in testing and self-calibration trends for integrated transceivers. In this work, the main focus is on enhancing the performances of analog and mixed-signal blocks with digitally adjustable elements as well as with automatic analog tuning circuits, which are experimentally applied to conventional blocks in the receiver path in order to demonstrate the concepts. The use of digitally controllable elements to compensate for variations is exemplified with two circuits. First, a distortion cancellation method for baseband operational transconductance amplifiers is proposed that enables a third-order intermodulation (IM3) improvement of up to 22dB. Fabricated in a 0.13µm CMOS process with 1.2V supply, a transconductance-capacitor lowpass filter with the linearized amplifiers has a measured IM3 below -70dB (with 0.2V peak-to-peak input signal) and 54.5dB dynamic range over its 195MHz bandwidth. The second circuit is a 3-bit two-step quantizer with adjustable reference levels, which was designed and fabricated in 0.18µm CMOS technology as part of a continuous-time SigmaDelta analog-to-digital converter system. With 5mV resolution at a 400MHz sampling frequency, the quantizer's static power dissipation is 24mW and its die area is 0.4mm^2. An alternative to electrical power detectors is introduced by outlining a strategy for built-in testing of analog circuits with on-chip temperature sensors. Comparisons of an amplifier's measurement results at 1GHz with the measured DC voltage output of an on-chip temperature sensor show that the amplifier's power dissipation can be monitored and its 1-dB compression point can be estimated with less than 1dB error. The sensor has a tunable sensitivity up to 200mV/mW, a power detection range measured up to 16mW, and it occupies a die area of 0.012mm^2 in standard 0.18µm CMOS technology. Finally, an analog calibration technique is discussed to lessen the mismatch between transistors in the differential high-frequency signal path of analog CMOS circuits. The proposed methodology involves auxiliary transistors that sense the existing mismatch as part of a feedback loop for error minimization. It was assessed by performing statistical Monte Carlo simulations of a differential amplifier and a double-balanced mixer designed in CMOS technologies
    corecore