3,024 research outputs found

    RGB-D datasets using microsoft kinect or similar sensors: a survey

    Get PDF
    RGB-D data has turned out to be a very useful representation of an indoor scene for solving fundamental computer vision problems. It takes the advantages of the color image that provides appearance information of an object and also the depth image that is immune to the variations in color, illumination, rotation angle and scale. With the invention of the low-cost Microsoft Kinect sensor, which was initially used for gaming and later became a popular device for computer vision, high quality RGB-D data can be acquired easily. In recent years, more and more RGB-D image/video datasets dedicated to various applications have become available, which are of great importance to benchmark the state-of-the-art. In this paper, we systematically survey popular RGB-D datasets for different applications including object recognition, scene classification, hand gesture recognition, 3D-simultaneous localization and mapping, and pose estimation. We provide the insights into the characteristics of each important dataset, and compare the popularity and the difficulty of those datasets. Overall, the main goal of this survey is to give a comprehensive description about the available RGB-D datasets and thus to guide researchers in the selection of suitable datasets for evaluating their algorithms

    Transfer: Cross Modality Knowledge Transfer using Adversarial Networks -- A Study on Gesture Recognition

    Full text link
    Knowledge transfer across sensing technology is a novel concept that has been recently explored in many application domains, including gesture-based human computer interaction. The main aim is to gather semantic or data driven information from a source technology to classify / recognize instances of unseen classes in the target technology. The primary challenge is the significant difference in dimensionality and distribution of feature sets between the source and the target technologies. In this paper, we propose TRANSFER, a generic framework for knowledge transfer between a source and a target technology. TRANSFER uses a language-based representation of a hand gesture, which captures a temporal combination of concepts such as handshape, location, and movement that are semantically related to the meaning of a word. By utilizing a pre-specified syntactic structure and tokenizer, TRANSFER segments a hand gesture into tokens and identifies individual components using a token recognizer. The tokenizer in this language-based recognition system abstracts the low-level technology-specific characteristics to the machine interface, enabling the design of a discriminator that learns technology-invariant features essential for recognition of gestures in both source and target technologies. We demonstrate the usage of TRANSFER for three different scenarios: a) transferring knowledge across technology by learning gesture models from video and recognizing gestures using WiFi, b) transferring knowledge from video to accelerometer, and d) transferring knowledge from accelerometer to WiFi signals
    • …
    corecore