88 research outputs found

    An Improved Throughput for Non-Binary Low-Density-Parity-Check Decoder

    Get PDF
    Low-Density-Parity-Check (LDPC) based error control decoders find wide range of application in both storage and communication systems, because of the merits they possess which include high appropriateness towards parallelization and excellent performance in error correction. Field-Programmable Gate Array (FPGA) has provided a robust platform in terms of parallelism, resource allocation and excellent performing speed for implementing non-binary LDPC decoder architectures. This paper proposes, a high throughput LDPC decoder through the implementation of fully parallel architecture and a reduction in the maximum iteration limit, needed for complete error correction. A Galois field of eight was utilized alongside a non-uniform quantization scheme, resulting in fewer bits per Log Likelihood Ratio (LLR) for the implementation. Verilog Hardware Description Language (HDL) was used in the description of the non-binary error control decoder. The propose decoder attained a throughput of 10Gbps at 400-MHz clock frequency when synthesized on a ZYNQ 7000 Series FPGA

    Design Trade‐Offs for FPGA Implementation of LDPC Decoders

    Get PDF
    Low density parity check (LDPC) decoders represent important throughput bottlenecks, as well as major cost and power-consuming components in today\u27s digital circuits for wireless communication and storage. They present a wide range of architectural choices, with different throughput, cost, and error correction capability trade-offs. In this book chapter, we will present an overview of the main design options in the architecture and implementation of these circuits on field programmable gate array (FPGA) devices. We will present the mapping of the main units within the LDPC decoders on the specific embedded components of FPGA device. We will review architectural trade-offs for both flooded and layered scheduling strategies in their FPGA implementation

    Towards Quantum Belief Propagation for LDPC Decoding in Wireless Networks

    Full text link
    We present Quantum Belief Propagation (QBP), a Quantum Annealing (QA) based decoder design for Low Density Parity Check (LDPC) error control codes, which have found many useful applications in Wi-Fi, satellite communications, mobile cellular systems, and data storage systems. QBP reduces the LDPC decoding to a discrete optimization problem, then embeds that reduced design onto quantum annealing hardware. QBP's embedding design can support LDPC codes of block length up to 420 bits on real state-of-the-art QA hardware with 2,048 qubits. We evaluate performance on real quantum annealer hardware, performing sensitivity analyses on a variety of parameter settings. Our design achieves a bit error rate of 10810^{-8} in 20 μ\mus and a 1,500 byte frame error rate of 10610^{-6} in 50 μ\mus at SNR 9 dB over a Gaussian noise wireless channel. Further experiments measure performance over real-world wireless channels, requiring 30 μ\mus to achieve a 1,500 byte 99.99%\% frame delivery rate at SNR 15-20 dB. QBP achieves a performance improvement over an FPGA based soft belief propagation LDPC decoder, by reaching a bit error rate of 10810^{-8} and a frame error rate of 10610^{-6} at an SNR 2.5--3.5 dB lower. In terms of limitations, QBP currently cannot realize practical protocol-sized (e.g.,\textit{e.g.,} Wi-Fi, WiMax) LDPC codes on current QA processors. Our further studies in this work present future cost, throughput, and QA hardware trend considerations

    Parallel Searching-Based Sphere Detector for MIMO Downlink OFDM Systems

    Get PDF
    In this paper, implementation of a detector with parallel partial candidate-search algorithm is described. Two fully independent partial candidate search processes are simultaneously employed for two groups of transmit antennas based on QR decomposition (QRD) and QL decomposition (QLD) of a multiple-input multiple-output (MIMO) channel matrix. By using separate simultaneous candidate searching processes, the proposed implementation of QRD-QLD searching-based sphere detector provides a smaller latency and a lower computational complexity than the original QRD-M detector for similar error-rate performance in wireless communications systems employing four transmit and four receive antennas with 16-QAM or 64-QAM constellation size. It is shown that in coded MIMO orthogonal frequency division multiplexing (MIMO OFDM) systems, the detection latency and computational complexity of a receiver can be substantially reduced by using the proposed QRD-QLD detector implementation. The QRD-QLD-based sphere detector is also implemented using Field Programmable Gate Array (FPGA) and application specific integrated circuit (ASIC), and its hardware design complexity is compared with that of other sphere detectors reported in the literature.Nokia Renesas MobileTexas InstrumentsXilinxNational Science Foundatio

    Improve the Usability of Polar Codes: Code Construction, Performance Enhancement and Configurable Hardware

    Full text link
    Error-correcting codes (ECC) have been widely used for forward error correction (FEC) in modern communication systems to dramatically reduce the signal-to-noise ratio (SNR) needed to achieve a given bit error rate (BER). Newly invented polar codes have attracted much interest because of their capacity-achieving potential, efficient encoder and decoder implementation, and flexible architecture design space.This dissertation is aimed at improving the usability of polar codes by providing a practical code design method, new approaches to improve the performance of polar code, and a configurable hardware design that adapts to various specifications. State-of-the-art polar codes are used to achieve extremely low error rates. In this work, high-performance FPGA is used in prototyping polar decoders to catch rare-case errors for error-correcting performance verification and error analysis. To discover the polarization characteristics and error patterns of polar codes, an FPGA emulation platform for belief-propagation (BP) decoding is built by a semi-automated construction flow. The FPGA-based emulation achieves significant speedup in large-scale experiments involving trillions of data frames. The platform is a key enabler of this work. The frozen set selection of polar codes, known as bit selection, is critical to the error-correcting performance of polar codes. A simulation-based in-order bit selection method is developed to evaluate the error rate of each bit using Monte Carlo simulations. The frozen set is selected based on the bit reliability ranking. The resulting code construction exhibits up to 1 dB coding gain with respect to the conventional bit selection. To further improve the coding gain of BP decoder for low-error-rate applications, the decoding error mechanisms are studied and analyzed, and the errors are classified based on their distinct signatures. Error detection is enabled by low-cost CRC concatenation, and post-processing algorithms targeting at each type of the error is designed to mitigate the vast majority of the decoding errors. The post-processor incurs only a small implementation overhead, but it provides more than an order of magnitude improvement of the error-correcting performance. The regularity of the BP decoder structure offers many hardware architecture choices. Silicon area, power consumption, throughput and latency can be traded to reach the optimal design points for practical use cases. A comprehensive design space exploration reveals several practical architectures at different design points. The scalability of each architecture is also evaluated based on the implementation candidates. For dynamic communication channels, such as wireless channels in the upcoming 5G applications, multiple codes of different lengths and code rates are needed to t varying channel conditions. To minimize implementation cost, a universal decoder architecture is proposed to support multiple codes through hardware reuse. A 40nm length- and rate-configurable polar decoder ASIC is demonstrated to fit various communication environments and service requirements.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/140817/1/shuangsh_1.pd

    A High-Throughput Energy-Efficient Implementation of Successive-Cancellation Decoder for Polar Codes Using Combinational Logic

    Get PDF
    This paper proposes a high-throughput energy-efficient Successive Cancellation (SC) decoder architecture for polar codes based on combinational logic. The proposed combinational architecture operates at relatively low clock frequencies compared to sequential circuits, but takes advantage of the high degree of parallelism inherent in such architectures to provide a favorable tradeoff between throughput and energy efficiency at short to medium block lengths. At longer block lengths, the paper proposes a hybrid-logic SC decoder that combines the advantageous aspects of the combinational decoder with the low-complexity nature of sequential-logic decoders. Performance characteristics on ASIC and FPGA are presented with a detailed power consumption analysis for combinational decoders. Finally, the paper presents an analysis of the complexity and delay of combinational decoders, and of the throughput gains obtained by hybrid-logic decoders with respect to purely synchronous architectures.Comment: 12 pages, 10 figures, 8 table

    Forward Error Correcting Codes for 100 Gbit/s Optical Communication Systems

    Get PDF
    corecore