237 research outputs found

    Hybrid RFID-Based System Using Active Two-Way Tags

    Get PDF
    Ultra High Frequency (UHF) Radio Frequency Identification (RFID) is a promising technology that has experienced tremendous growth by revolutionizing a variety of industry sectors and applications, such as automated data management, the tracking of a specified object, highway toll collection, library inventory tracking, multi-level asset tracking, and airport baggage control. For many RFID applications, it is desired to maximize the operating distance or read range. This thesis proposes a design of an analog front-end architecture and the baseband controller for a Class-4 Active Two-Way (C4-ATW) RFID tag in order to maximize or increase the tracking range by implementing a tag-hopping technique. In tag-hopping, C4-ATW RFID tags power their own communication with other C4-ATW RFID tags and existing passive RFID tag while the reader\u27s functionality remains unchanged. The simulation results indicate that the C4-ATW RFID tag can detect a minimum incident RF input power of -20 dBm at a 120 Kbps data rate. For -20 dBm input power; the achieved read range between a reader and tag is 36.7 meters at 4 W of reader power and between two tags, the read range is 2.15 meters at 25 mW tag power. Combined, the analog front end and baseband controller consume 50.3 mW of power and the area of the chip, including pads, is 854 µm x 542 µm

    Design And Implementation Of An X-Band Passive Rfid Tag

    Get PDF
    This research presents a novel fully integrated energy harvester, matching network, matching network,matching network, matching network,matching network, matching network, matching network, multi-stage RF-DC rectifier, mode selector, RC oscillator, LC oscillator, and X-band power amplifier implemented in IBM 0.18-µm RF CMOS technology. We investigated different matching schemes, antennas, and rectifiers with focus on the interaction between building blocks. Currently the power amplifier gives the maximum output power of 5.23 dBm at 9.1GHz. The entire RFID tag circuit was designed to operate in low power consumption. Voltage sensor circuit which generates the enable signal was designed to operate in very low current. All the test blocks of the RFID tag were tested. The smaller size and the cost of the RFID tag are critical for widespread adoption of the technology. The cost of the RFID tag can be lowered by implementing an on-chip antenna. We were able to develop, fabricate, and implement a fully integrated RFID tag in a smaller size (3 mm X 1.5 mm) than the existing tags. With further modifications, this could be used as a commercial low cost RFID tag

    Wireless power transmission: R&D activities within Europe

    Get PDF
    Wireless power transmission (WPT) is an emerging technology that is gaining increased visibility in recent years. Efficient WPT circuits, systems and strategies can address a large group of applications spanning from batteryless systems, battery-free sensors, passive RF identification, near-field communications, and many others. WPT is a fundamental enabling technology of the Internet of Things concept, as well as machine-to-machine communications, since it minimizes the use of batteries and eliminates wired power connections. WPT technology brings together RF and dc circuit and system designers with different backgrounds on circuit design, novel materials and applications, and regulatory issues, forming a cross disciplinary team in order to achieve an efficient transmission of power over the air interface. This paper aims to present WPT technology in an integrated way, addressing state-of-the-art and challenges, and to discuss future R&D perspectives summarizing recent activities in Europe.The work of N. Borges Carvalho and A. J. S. Soares Boaventura was supported by the Portuguese Foundation for Science and Technology (FCT) under Project CREATION EXCL/EEI-TEL/0067/2012 and Doctoral Scholarship SFRH/BD/80615/2011. The work of H. Rogier was supported by BELSPO through the IAP Phase VII BESTCOM project and the Fund for Scientific Research-Flanders (FWO-V). The work of A. Georgiadis and A. Collado was supported by the European Union (EU) under Marie Curie FP7-PEOPLE-2009-IAPP 251557 and the Spanish Ministry of Economy and Competitiveness Project TEC 2012-39143. The work of J. A. García and M. N. Ruíz was supported by the Spanish Ministries MICINN and MINECO under FEDER co-funded Project TEC2011-29126-C03-01 and Project CSD2008-00068. The work of J. Kracek and M. Mazanek was supported in part by the Czech Ministry of Education Youth and Sports under Project OC09075–Novel Emerging Wireless Systems

    Next generation RFID telemetry design for biomedical implants.

    Get PDF
    The design and development of a Radio Frequency Identification (RFID) based pressure-sensing system to increase the range of current Intra-Ocular Pressure (IOP) sensing systems is described in this dissertation. A large number of current systems use near-field inductive coupling for the transfer of energy and data, which limits the operational range to only a few centimeters and does not allow for continuous monitoring of pressure. Increasing the powering range of the telemetry system will offer the possibility of continuous monitoring since the reader can be attached to a waist belt or put on a night stand when sleeping. The system developed as part of this research operates at Ultra-High Frequencies (UHF) and makes use of the electromagnetic far field to transfer energy and data, which increases the potential range of operation and allows for the use of smaller antennas. The system uses a novel electrically small antenna (ESA) to receive the incident RF signal. A four stage Schottky circuit rectifies and multiplies the received RF signal and provides DC power to a Colpitts oscillator. The oscillator is connected to a pressure sensor and provides an output signal frequency that is proportional to the change in pressure. The system was fabricated using a mature, inexpensive process. The performance of the system compares well with current state of the art, but uses a smaller antenna and a less expensive fabrication process. The system was able to operate over the desired range of 1 m using a half-wave dipole antenna. It was possible to power the system over a range of at least 6.4 cm when the electrically small antenna was used as the receiving antenna

    Co-Design Strategies for Energy-Efficient UWB and UHF Wireless Systems

    Get PDF
    This paper reviews the most recent methods, combining nonlinear harmonic-balance-based analysis with electromagnetic (EM) simulation, for optimizing, at the circuit level, modern radiative RF/microwave systems. In order to maximize the system efficiency, each subsystem must be designed layoutwise, accounting for the presence of the others, that is, accounting for its actual terminations, rather than the ideal ones (50 Ω). In this way, the twofold goal of minimizing size and losses of the system is obtained by reducing intersystem matching networks. Indeed, terminations are complex, frequency-dispersive, and variable with the signal level, if active operations are concerned, and are responsible for performance degradation if not properly optimized. This approach is nowadays necessary, given the ever increased spread of pervasively distributed RF microsystems adopting miniaturized antennas, such as radio frequency identification (RFID) or wireless sensor networks, that must be low-cost, low-profile, low-power, and must simultaneously perform localization, identification, and sensing. For the design of a transmitter and a receiver connected with the respective antennas, suitable figures of merit are considered, encompassing radiation and nonlinear performance. Recent representative low-profile realizations, adopting ultra-wideband (UWB) excitations are used to highlight the benefit of the proposed nonlinear/EM approach for next generation energy autonomous microsystem, such as UWB-RFID tags

    MR4RF: MEM-device with impedance and their usage with impedance matching networks for passive RFID tags in the UHF

    Get PDF
    The passive RFID tag in the UHF has been employed in several different applications including, tracking, logistics, and as a sensing platform for the Internet of things (IoT). The tag is ideal for this industry due to its unique design. It harvests all of its energy from the environment, and is small, cheap, and requires little to no maintenance. However, there are two major issues limiting the potential of the passive RFID systems: the limited power harvested by the tag, and the high susceptibility to interference and coupling. In particular, dynamic environments render the traditionally fixed, RF impedance matching network ineffective. A novel design for a flexible Impedance-Switching Network (ISN) for passive RFID tags in the UHF is presented in this thesis. This novel approach can maximize power harvested by the tag. We propose two approaches to implementing the ISN. First, a more traditional design with a series of varactors is developed and studied. Each varactor is placed in parallel impedance lanes that are controlled via a feedback loop to maximize harvested power. A four-lane ISN is designed, tested, and tuned. The simulations and experiments demonstrate that ISN is capable of compensating for negative effect of mutual coupling in a ferromagnetic-reach environment. The second design employs a new material called a memristive switch that can replace the varactors in the ISN. State of a memristive switch is non-volatile and requires little energy to operate, thus making it ideal for passive RFID tags. We are the first to characterize the Co3O4 based memristive switch in UHF range. The results show that it can be employed as a varying capacitor in the RF front-end design. We propose three general configurations for the ISNs --Abstract, page iii

    Operating Range Evaluation of RFID Systems

    Get PDF
    corecore