1,671 research outputs found

    Post-test simulation of a PLOFA transient test in the CIRCE-HERO facility

    Get PDF
    CIRCE is a lead–bismuth eutectic alloy (LBE) pool facility aimed to simulate the primary system of a heavy liquid metal (HLM) cooled pool-type fast reactor. The experimental facility was implemented with a new test section, called HERO (Heavy liquid mEtal pRessurized water cOoled tubes), which consists of a steam generator composed of seven double-wall bayonet tubes (DWBT) with an active length of six meters. The experimental campaign aims to investigate HERO behavior, which is representative of the tubes that will compose ALFRED SG. In the framework of the Horizon 2020 SESAME project, a transient test was selected for the realization of a validation benchmark. The test consists of a protected loss of flow accident (PLOFA) simulating the shutdown of primary pumps, the reactor scram and the activation of the DHR system. A RELAP5-3D© nodalization scheme was developed in the pre-test phase at DIAEE of “Sapienza” University of Rome, providing useful information to the experimentalists. The model consisted to a mono-dimensional scheme of the primary flow path and the SG secondary side, and a multi-dimensional component simulating the large LBE pool. The analysis of experimental data, provided by ENEA, has suggested to improve the thermal–hydraulic model with a more detailed nodalization scheme of the secondary loop, looking to reproduce the asymmetries observed on the DWBTs operation. The paper summarizes the post-test activity performed in the frame of the H2020 SESAME project as a contribution of the benchmark activity, highlighting a global agreement between simulations and experiment for all the primary circuit physical quantities monitored. Then, the attention is focused on the secondary system operation, where uncertainties related to the boundary conditions affect the computational results

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Carbon electrode for the oxygen reduction reaction

    Get PDF
    This PhD thesis presents work on developing freestanding carbon electrodes for the oxygen reduction reaction application cost-effectively and sustainably. Within different alternatives to the high-cost Pt catalysts, heteroatoms and transitional metals modified carbon electrocatalysts have shown great promise to reduce the use of Pt. Meanwhile, synthesising freestanding catalysts has drawn interest due to the advantages of being binder-free, fewer manufacturing steps, and high recyclability. The first part of this thesis focuses on synthesising a freestanding carbon electrode with a hierarchical porosity and abundant nitrogen-doped sites. The carbon electrodes were synthesised through hydrothermal carbonization, followed by a pelleting process and further carbonization. Uniformly dispersed nitrogen sites and high specific surface area were obtained for the carbon electrodes. The electrochemical activity showed high stability in the freestanding configuration, and I found only the surface of electrode was reducing oxygen. The second part focuses on improving the carbon electrode's catalytic performance via post functionalization of the as-obtained nitrogen-doped carbon electrodes. Functionalization was carried out by immersing the carbon electrode into Fe solutions and followed by carbonization. The Fe was found to exist mainly as single sites. The electrochemical performance showed doubled current density compared to without Fe, and 100,000 s (27.77 h) stability was observed at 0.5 V. Through ex-situ X-ray absorption spectroscopy and electron paramagnetic resonance studies, Fe sites were found responsible for reducing oxygen. The third part focuses on the scalable synthesis of a low-cost iron, nitrogen co-doped carbon. Powdered iron, nitrogen co-doped carbon catalysts was prepared by hydrothermal carbonization and high-temperature post carbonization. FeN4 was found to be the main iron existing form in the obtained catalysts. Two different precursors containing Fe2+ and Fe3+ are compared. Both chemical and structural differences have been observed in catalysts starting from Fe2+ and Fe3+ precursors. Furthermore, this catalyst is studied in an anion exchange membrane fuel cell.Open Acces

    Investigation on RELAP5-3D© capability to predict thermal stratification in liquid metal pool-type system and comparison with experimental data

    Get PDF
    A numerical activity, aimed to evaluate the capability of RELAP5-3D© to reproduce the main thermal-hydraulic phenomena in an HLM pool-type facility, in different operative conditions, is presented. For this purpose, the experimental campaign performed in CIRCE-ICE test facility has been selected for the code assessment. Two experimental tests have been analyzed: TEST A consisting in a transition from no-power to a full power steady state conditions, and TEST I, consisting in a transition from gas-enhanced circulation to natural circulation, simulating a protected loss of heat sink plus a loss of flow accident. Three different pool modelling approaches are presented, consisting in a single vertical pipe, parallel pipes with cross junctions and multi-dimensional component. The comparison with experimental data has highlighted the need to divide the large pool in several sections to reproduce the natural convection, strictly correlated with the thermal stratification. The multi-dimensional component seems to be the best practice for the evaluation of this phenomenon even if the lack of specific correlation for heat transfer coefficient in quasi-stagnant conditions in large tanks is a limit for the accuracy of the results. In addition, the paper presents a detailed nodalization of the fuel pin bundle, highlighting quite good capabilities of RELAP5-3D as a subchannel analysis code

    ASCR/HEP Exascale Requirements Review Report

    Full text link
    This draft report summarizes and details the findings, results, and recommendations derived from the ASCR/HEP Exascale Requirements Review meeting held in June, 2015. The main conclusions are as follows. 1) Larger, more capable computing and data facilities are needed to support HEP science goals in all three frontiers: Energy, Intensity, and Cosmic. The expected scale of the demand at the 2025 timescale is at least two orders of magnitude -- and in some cases greater -- than that available currently. 2) The growth rate of data produced by simulations is overwhelming the current ability, of both facilities and researchers, to store and analyze it. Additional resources and new techniques for data analysis are urgently needed. 3) Data rates and volumes from HEP experimental facilities are also straining the ability to store and analyze large and complex data volumes. Appropriately configured leadership-class facilities can play a transformational role in enabling scientific discovery from these datasets. 4) A close integration of HPC simulation and data analysis will aid greatly in interpreting results from HEP experiments. Such an integration will minimize data movement and facilitate interdependent workflows. 5) Long-range planning between HEP and ASCR will be required to meet HEP's research needs. To best use ASCR HPC resources the experimental HEP program needs a) an established long-term plan for access to ASCR computational and data resources, b) an ability to map workflows onto HPC resources, c) the ability for ASCR facilities to accommodate workflows run by collaborations that can have thousands of individual members, d) to transition codes to the next-generation HPC platforms that will be available at ASCR facilities, e) to build up and train a workforce capable of developing and using simulations and analysis to support HEP scientific research on next-generation systems.Comment: 77 pages, 13 Figures; draft report, subject to further revisio

    Network traffic characterisation, analysis, modelling and simulation for networked virtual environments

    Get PDF
    Networked virtual environment (NVE) refers to a distributed software system where a simulation, also known as virtual world, is shared over a data network between several users that can interact with each other and the simulation in real-time. NVE systems are omnipresent in the present globally interconnected world, from entertainment industry, where they are one of the foundations for many video games, to pervasive games that focus on e-learning, e-training or social studies. From this relevance derives the interest in better understanding the nature and internal dynamics of the network tra c that vertebrates these systems, useful in elds such as network infrastructure optimisation or the study of Quality of Service and Quality of Experience related to NVE-based services. The goal of the present work is to deepen into this understanding of NVE network tra c by helping to build network tra c models that accurately describe it and can be used as foundations for tools to assist in some of the research elds enumerated before. First contribution of the present work is a formal characterisation for NVE systems, which provides a tool to determine which systems can be considered as NVE. Based on this characterisation it has been possible to identify numerous systems, such as several video games, that qualify as NVE and have an important associated literature focused on network tra c analysis. The next contribution has been the study of this existing literature from a NVE perspective and the proposal of an analysis pipeline, a structured collection of processes and techniques to de ne microscale network models for NVE tra c. This analysis pipeline has been tested and validated against a study case focused on Open Wonderland (OWL), a framework to build NVE systems of di erent purpose. The analysis pipeline helped to de ned network models from experimental OWL tra c and assessed on their accuracy from a statistical perspective. The last contribution has been the design and implementation of simulation tools based on the above OWL models and the network simulation framework ns-3. The purpose of these simulations was to con rm the validity of the OWL models and the analysis pipeline, as well as providing potential tools to support studies related to NVE network tra c. As a result of this nal contribution, it has been proposed to exploit the parallelisation potential of these simulations through High Throughput Computing techniques and tools, aimed to coordinate massively parallel computing workloads over distributed resources
    • …
    corecore