957 research outputs found

    Efficient job scheduling for a cellular manufacturing environment

    Get PDF
    An important aspect of any manufacturing environment is efficient job scheduling. With an increase in manufacturing facilities focused on producing goods with a cellular manufacturing approach, the need arises to schedule jobs optimally into cells at a specific time. A mathematical model has been developed to represent a standard cellular manufacturing job scheduling problem. The model incorporates important parameters of the jobs and the cells along with other system constraints. With each job and each cell having its own distinguishing parameters, the task of scheduling jobs via integer linear programming quickly becomes very difficult and time-consuming. In fact, such a job scheduling problem is of the NP-Complete complexity class. In an attempt to solve the problem within an acceptable amount of time, several heuristics have been developed to be applied to the model and examined for problems of different sizes and difficulty levels, culminating in an ultimate heuristic that can be applied to most size problems. The ultimate heuristic uses a greedy multi-phase iterative process to first assign jobs to particular cells and then to schedule the jobs within the assigned cells. The heuristic relaxes several variables and constraints along the way, while taking into account the flexibility of the different jobs and the current load of the different cells. Testing and analysis shows that when the heuristic is applied to various size job scheduling problems, the solving time is significantly decreased, while still resulting in a near optimal solution. ii

    Study on application possibilities of Case-Based Reasoning on the domain of scheduling problems

    Get PDF
    Ces travaux concernent la mise en place d'un système d'aide à la décision, s'appuyant sur le raisonnement à partir de cas, pour la modélisation et la résolution des problèmes d'ordonnancement en génie des procédés. Une analyse de co-citation a été exécutée afin d'extraire de la littérature la connaissance nécessaire à la construction de la stratégie d'aide à la décision et d'obtenir une image de la situation, de l'évolution et de l'intensité de la recherche du domaine des problèmes d'ordonnancement. Un système de classification a été proposée, et la nomenclature proposée par Blazewicz et al. (2007) a été étendue de manière à pouvoir caractériser de manière complète les problèmes d'ordonnancement et leur mode de résolution. Les difficultés d'adaptation du modèle ont été discutées, et l'efficacité des quatre modèles de littérature a été comparée sur trois exemples de flow-shop. Une stratégie de résolution est proposée en fonction des caractéristiques du problème mathématique. ABSTRACT : The purpose of this study is to work out the foundations of a decision-support system in order to advise efficient resolution strategies for scheduling problems in process engineering. This decision-support system is based on Case-Based Reasoning. A bibliographic study based on co-citation analysis has been performed in order to extract knowledge from the literature and obtain a landscape about scheduling research, its intensity and evolution. An open classification scheme has been proposed to scheduling problems, mathematical models and solving methods. A notation scheme corresponding to the classification has been elaborated based on the nomenclature proposed by Blazewicz et al. (2007). The difficulties arising during the adaptation of a mathematical model to different problems is discussed, and the performances of four literature mathematical models have been compared on three flow-shop examples. A resolution strategy is proposed based on the characteristics of the scheduling problem

    Scheduling of manufacturing systems based on extreme value theory and genetic algorithms

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1995.Includes bibliographical references (p. 143-154).by Velusamy Subramaniam.Ph.D

    Intelligent shop scheduling for semiconductor manufacturing

    Get PDF
    Semiconductor market sales have expanded massively to more than 200 billion dollars annually accompanied by increased pressure on the manufacturers to provide higher quality products at lower cost to remain competitive. Scheduling of semiconductor manufacturing is one of the keys to increasing productivity, however the complexity of manufacturing high capacity semiconductor devices and the cost considerations mean that it is impossible to experiment within the facility. There is an immense need for effective decision support models, characterizing and analyzing the manufacturing process, allowing the effect of changes in the production environment to be predicted in order to increase utilization and enhance system performance. Although many simulation models have been developed within semiconductor manufacturing very little research on the simulation of the photolithography process has been reported even though semiconductor manufacturers have recognized that the scheduling of photolithography is one of the most important and challenging tasks due to complex nature of the process. Traditional scheduling techniques and existing approaches show some benefits for solving small and medium sized, straightforward scheduling problems. However, they have had limited success in solving complex scheduling problems with stochastic elements in an economic timeframe. This thesis presents a new methodology combining advanced solution approaches such as simulation, artificial intelligence, system modeling and Taguchi methods, to schedule a photolithography toolset. A new structured approach was developed to effectively support building the simulation models. A single tool and complete toolset model were developed using this approach and shown to have less than 4% deviation from actual production values. The use of an intelligent scheduling agent for the toolset model shows an average of 15% improvement in simulated throughput time and is currently in use for scheduling the photolithography toolset in a manufacturing plant

    Multi Agent Systems in Logistics: A Literature and State-of-the-art Review

    Get PDF
    Based on a literature survey, we aim to answer our main question: “How should we plan and execute logistics in supply chains that aim to meet today’s requirements, and how can we support such planning and execution using IT?†Today’s requirements in supply chains include inter-organizational collaboration and more responsive and tailored supply to meet specific demand. Enterprise systems fall short in meeting these requirements The focus of planning and execution systems should move towards an inter-enterprise and event-driven mode. Inter-organizational systems may support planning going from supporting information exchange and henceforth enable synchronized planning within the organizations towards the capability to do network planning based on available information throughout the network. We provide a framework for planning systems, constituting a rich landscape of possible configurations, where the centralized and fully decentralized approaches are two extremes. We define and discuss agent based systems and in particular multi agent systems (MAS). We emphasize the issue of the role of MAS coordination architectures, and then explain that transportation is, next to production, an important domain in which MAS can and actually are applied. However, implementation is not widespread and some implementation issues are explored. In this manner, we conclude that planning problems in transportation have characteristics that comply with the specific capabilities of agent systems. In particular, these systems are capable to deal with inter-organizational and event-driven planning settings, hence meeting today’s requirements in supply chain planning and execution.supply chain;MAS;multi agent systems

    Scheduling in assembly type job-shops

    Get PDF
    Assembly type job-shop scheduling is a generalization of the job-shop scheduling problem to include assembly operations. In the assembly type job-shops scheduling problem, there are n jobs which are to be processed on in workstations and each job has a due date. Each job visits one or more workstations in a predetermined route. The primary difference between this new problem and the classical job-shop problem is that two or more jobs can merge to foul\u27 a new job at a specified workstation, that is job convergence is permitted. This feature cannot be modeled by existing job-shop techniques. In this dissertation, we develop scheduling procedures for the assembly type job-shop with the objective of minimizing total weighted tardiness. Three types of workstations are modeled: single machine, parallel machine, and batch machine. We label this new scheduling procedure as SB. The SB procedure is heuristic in nature and is derived from the shifting bottleneck concept. SB decomposes the assembly type job-shop scheduling problem into several workstation scheduling sub-problems. Various types of techniques are used in developing the scheduling heuristics for these sub-problems including the greedy method, beam search, critical path analysis, local search, and dynamic programming. The performance of SB is validated on a set of test problems and compared with priority rules that are normally used in practice. The results show that SB outperforms the priority rules by an average of 19% - 36% for the test problems. SB is extended to solve scheduling problems with other objectives including minimizing the maximum completion time, minimizing weighted flow time and minimizing maximum weighted lateness. Comparisons with the test problems, indicate that SB outperforms the priority rules for these objectives as well. The SB procedure and its accompanying logic is programmed into an object oriented scheduling system labeled as LEKIN. The LEKIN program includes a standard library of scheduling rules and hence can be used as a platform for the development of new scheduling heuristics. In industrial applications LEKIN allows schedulers to obtain effective machine schedules rapidly. The results from this research allow us to increase shop utilization, improve customer satisfaction, and lower work-in-process inventory without a major capital investment

    Symmetry-Adapted Machine Learning for Information Security

    Get PDF
    Symmetry-adapted machine learning has shown encouraging ability to mitigate the security risks in information and communication technology (ICT) systems. It is a subset of artificial intelligence (AI) that relies on the principles of processing future events by learning past events or historical data. The autonomous nature of symmetry-adapted machine learning supports effective data processing and analysis for security detection in ICT systems without the interference of human authorities. Many industries are developing machine-learning-adapted solutions to support security for smart hardware, distributed computing, and the cloud. In our Special Issue book, we focus on the deployment of symmetry-adapted machine learning for information security in various application areas. This security approach can support effective methods to handle the dynamic nature of security attacks by extraction and analysis of data to identify hidden patterns of data. The main topics of this Issue include malware classification, an intrusion detection system, image watermarking, color image watermarking, battlefield target aggregation behavior recognition model, IP camera, Internet of Things (IoT) security, service function chain, indoor positioning system, and crypto-analysis

    Job Shop Scheduling with Flexible Maintenance Planning

    Get PDF
    This thesis considers the scheduling challenges encountered at a particular facility in the nuclear industry. The scheduling problem is modelled as a variant of the job shop scheduling problem. Important aspects of the considered problem include the scheduling of jobs with both soft and hard due dates, and the integration of maintenance planning with job scheduling. Two variants of the scheduling problem are considered: The first variant makes the classic job shop assumption of infinite queueing capacity at each machine, while such queueing capacity is non-existent in the second variant. Without queueing capacity, the scheduling problem is a variant of the blocking job shop problem. For the non-blocking variant of the problem, it is shown that good solutions can be obtained quickly by hybridising a novel Ant Colony Optimisation method with a novel Branch and Bound method. For the blocking variant of the problem, it is shown that a novel Branch and Bound method can rapidly find optimal solutions. This Branch and Bound method is shown to provide good performance due to, amongst other things, a novel search strategy and a novel branching strategy
    corecore