5,225 research outputs found

    A 0.35 μm CMOS 17-bit@40-kS/s cascade 2-1 ΣΔ modulator with programmable gain and programmable chopper stabilization

    Get PDF
    This paper describes a 0.35μm CMOS chopper-stabilized Switched-Capacitor 2-1 cascade ΣDelta; modulator for automotive sensor interfaces. For a better fitting to the characteristics of different sensor outputs, the modulator includes a programmable set of gains (x0.5, x1, x2, and x4) and a programmable set of chopper frequencies (fs/16, fs/8, fs/4 and fs/2). It has also been designed to operate within the restrictive environmental conditions of automotive electronics (-40°C, 175°C). The modulator architecture has been selected after an exhaustive comparison among multiple ΣΔM topologies in terms of resolution, speed and power dissipation. The design of the modulator building blocks is based upon a top-down CAD methodology which combines simulation and statistical optimization at different levels of the modulator hierarchy. The circuit is clocked at 5.12MHz and consumes, all together, 14.7mW from a single 3.3-V supply. Experimental measurements result in 99.77dB of Dynamic Range (DR), which combined with the gain programmability leads to an overall DR of 112dB. This puts the presented design beyond the state-of-the-art according with the existing bibliography

    A 10-bit Charge-Redistribution ADC Consuming 1.9 μW at 1 MS/s

    Get PDF
    This paper presents a 10 bit successive approximation ADC in 65 nm CMOS that benefits from technology scaling. It meets extremely low power requirements by using a charge-redistribution DAC that uses step-wise charging, a dynamic two-stage comparator and a delay-line-based controller. The ADC requires no external reference current and uses only one external supply voltage of 1.0 V to 1.3 V. Its supply current is proportional to the sample rate (only dynamic power consumption). The ADC uses a chip area of approximately 115--225 μm2. At a sample rate of 1 MS/s and a supply voltage of 1.0 V, the 10 bit ADC consumes 1.9 μW and achieves an energy efficiency of 4.4 fJ/conversion-step

    An Ultra-Low-Power Track-and-Hold Amplifier

    Get PDF
    The future of electronics is the Internet of Things (IoT) paradigm, where always-on devices and sensors monitor and transform everyday life. A plethora of applications (such as navigating drivers past road hazards or monitoring bridge and building stresses) employ this technology. These unattended ground-sensor applications require decade(s)-long operational life-times without battery changes. Such electronics demand stringent performance specifications with only nano-Watt power levels.This thesis presents an ultra-low-power track-and-hold amplifier for such systems. It serves as the front-end of a SAR-ADC or the building block for equalizers or filters. This amplifier\u27s design attains exceptional hold times by mitigating switch subthreshold leakage and bulk leakage. Its novel transmission-gate topology achieves wide-swing performance. Though only consuming 100 pico-Watts, it achieves a precision of 7.6 effective number of bits (ENOB). The track-and-hold amplifier was designed in 130-nm CMOS

    High Speed and Low Pedestal Error Bootstrapped CMOS Sample and Hold Circuit

    Get PDF
    A new high speed, low pedestal error bootstrapped CMOS sample and hold (S/H) circuit is proposed for high speed analog-to-digital converter (ADC). The proposed circuit is made up of CMOS transmission gate (TG) switch and two new bootstrap circuits for each transistor in TG switch. Both TG switch and bootstrap circuits are used to decrease channel charge injection and on-resistance input signal dependency. In result, distortion can be reduced. The decrease of channel charge injection input signal dependency also makes the minimizing of pedestal error by adjusting the width of NMOS and PMOS of TG switch possible. The performance of the proposed circuit was evaluated using HSPICE 0.18-m CMOS process. For 50 MHz sinusoidal 1 V peak-to-peak differential input signal with a 1 GHz sampling clock, the proposed circuit achieves 2.75 mV maximum pedestal error, 0.542 mW power consumption, 90.87 dB SNR, 73.50 SINAD which is equal to 11.92 bits ENOB, -73.58 dB THD, and 73.95 dB SFDR

    An Octave-Range, Watt-Level, Fully-Integrated CMOS Switching Power Mixer Array for Linearization and Back-Off-Efficiency Improvement

    Get PDF
    The power mixer array is presented as a novel power generation approach for non-constant envelope signals. It comprises several power mixer units that are dynamically turned on and off to improve the linearity and back-off efficiency. At the circuit level, the power mixer unit can operate as a switching amplifier to achieve high peak power efficiency. Additional circuit level linearization and back-off efficiency improvement techniques are also proposed. To demonstrate the feasibility of this idea, a fully-integrated octave-range CMOS power mixer array is implemented in a 130 nm CMOS process. It is operational between 1.2 GHz and 2.4 GHz and can generate an output power of +31.3 dBm into an external 50 Ω load with a PAE of 42% and a gain compression of only 0.4 dB at 1.8 GHz. It achieves a PAE of 25%, at an average output power of +26.4 dBm, and an EVM of 4.6% with a non-constant-envelope 16 QAM signal. It can also produce arbitrary signal levels down to -70 dBm of output power with the 16 QAM-modulated signal without any RF gain control circuit

    A review of advances in pixel detectors for experiments with high rate and radiation

    Full text link
    The Large Hadron Collider (LHC) experiments ATLAS and CMS have established hybrid pixel detectors as the instrument of choice for particle tracking and vertexing in high rate and radiation environments, as they operate close to the LHC interaction points. With the High Luminosity-LHC upgrade now in sight, for which the tracking detectors will be completely replaced, new generations of pixel detectors are being devised. They have to address enormous challenges in terms of data throughput and radiation levels, ionizing and non-ionizing, that harm the sensing and readout parts of pixel detectors alike. Advances in microelectronics and microprocessing technologies now enable large scale detector designs with unprecedented performance in measurement precision (space and time), radiation hard sensors and readout chips, hybridization techniques, lightweight supports, and fully monolithic approaches to meet these challenges. This paper reviews the world-wide effort on these developments.Comment: 84 pages with 46 figures. Review article.For submission to Rep. Prog. Phy

    Design of Low-Voltage High-Performance Sample and Hold Circuit in 0.18μm CMOS Technology

    Get PDF
    Over the last two decade, digital signal processing (DSP) has grown rapidly in electronic systems to provide more reconfigureability and programmability in the applications, compared to analog component, which allows easier design and test automation. Digital circuit usage is increasing because of scaling properties of very large scale integration (VLSI) processes. This has allowed new generation of digital circuit to attain higher speed, more functionality per chip, low power dissipation, lower cost. Analog world, analog to digital converter (ADC) are used to convert the signal from analog to digital domain. For interfacing with DSP sample and hold (S/H) circuit is a key building block in, and is often used in front end of the ADCs to relax their timing requirement. The function of S/H circuit is to take samples to its input signal and hold these samples in its output for some period of time. The analog circuits in low voltage and low power have assumed great significance due to mixed-mode design required for modern electronic gadgets that demand portability and little power consumption. The mixed mode circuit has existence of both analog and digital circuits on the same chip and it is possible to have low voltage digital circuit in modern scaled-down technologies. However the same is not always true with analog circuits due to the constrains of device noise level and threshold voltage (VT) of MOSFET. Thus for analog circuit to co-exist on the same substrate along with digital system and share same supply voltage, the operation of analog circuit in low voltage environment is essential. The objective of this research is to design a low-voltage, high-performance S/H circuit that will address the above problems. A typical switch capacitor S/H circuit needs amplifier, switches and capacitor. New amplifier have been designed by using the architecture of single stage fully differential folded cascode low voltage operation transconductance amplifier (OTA) which has high gain and speed; the gin boosting technique was used for purpose of increasing the gain of the OTA. This technique does not affect the speed of the single stage. The transmission gate switches using CMOS devices, which have higher linearity and higher speed over a single MOS switch, have been designed for use in the S/H circuit. The switches are operated by clock generator with two non overlapping clock signals having low rise and fall time offering low noise for the S/H circuit. The clock was designed with 77.17ps rise and fall time to reduce the errors of driving MOS switches which results in higher linearity. The S/H circuit was designed to operate with 1.8V supply voltage in 0.18um technology. The sampling rate is 40MSPS with spurious free dynamic range (SFDR) 65.7dB and SNR 70dB
    corecore