1,377 research outputs found

    An ultra low-power hardware accelerator for automatic speech recognition

    Get PDF
    Automatic Speech Recognition (ASR) is becoming increasingly ubiquitous, especially in the mobile segment. Fast and accurate ASR comes at a high energy cost which is not affordable for the tiny power budget of mobile devices. Hardware acceleration can reduce power consumption of ASR systems, while delivering high-performance. In this paper, we present an accelerator for large-vocabulary, speaker-independent, continuous speech recognition. It focuses on the Viterbi search algorithm, that represents the main bottleneck in an ASR system. The proposed design includes innovative techniques to improve the memory subsystem, since memory is identified as the main bottleneck for performance and power in the design of these accelerators. We propose a prefetching scheme tailored to the needs of an ASR system that hides main memory latency for a large fraction of the memory accesses with a negligible impact on area. In addition, we introduce a novel bandwidth saving technique that removes 20% of the off-chip memory accesses issued during the Viterbi search. The proposed design outperforms software implementations running on the CPU by orders of magnitude and achieves 1.7x speedup over a highly optimized CUDA implementation running on a high-end Geforce GTX 980 GPU, while reducing by two orders of magnitude (287x) the energy required to convert the speech into text.Peer ReviewedPostprint (author's final draft

    A low-power, high-performance speech recognition accelerator

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Automatic Speech Recognition (ASR) is becoming increasingly ubiquitous, especially in the mobile segment. Fast and accurate ASR comes at high energy cost, not being affordable for the tiny power-budgeted mobile devices. Hardware acceleration reduces energy-consumption of ASR systems, while delivering high-performance. In this paper, we present an accelerator for largevocabulary, speaker-independent, continuous speech-recognition. It focuses on the Viterbi search algorithm representing the main bottleneck in an ASR system. The proposed design consists of innovative techniques to improve the memory subsystem, since memory is the main bottleneck for performance and power in these accelerators' design. It includes a prefetching scheme tailored to the needs of ASR systems that hides main memory latency for a large fraction of the memory accesses, negligibly impacting area. Additionally, we introduce a novel bandwidth-saving technique that removes off-chip memory accesses by 20 percent. Finally, we present a power saving technique that significantly reduces the leakage power of the accelerators scratchpad memories, providing between 8.5 and 29.2 percent reduction in entire power dissipation. Overall, the proposed design outperforms implementations running on the CPU by orders of magnitude, and achieves speedups between 1.7x and 5.9x for different speech decoders over a highly optimized CUDA implementation running on Geforce-GTX-980 GPU, while reducing the energy by 123-454x.Peer ReviewedPostprint (author's final draft

    Efficient hardware architectures for MPEG-4 core profile

    Get PDF
    Efficient hardware acceleration architectures are proposed for the most demandingMPEG-4 core profile algorithms, namely; texture motion estimation (TME), binary motion estimation (BME)and the shape adaptive discrete cosine transform (SA-DCT). The proposed ME designs may also be used for H.264, since both architectures can handle variable block sizes. Both ME architectures employ early termination techniques that reduce latency and save needless memory accesses and power consumption. They also use a pixel subsampling technique to facilitate parallelism, while balancing the computational load. The BME datapath also saves operations by using Run Length Coded (RLC) pixel addressing. The SA-DCT module has a re-configuring multiplier-less serial datapath using adders and multiplexers only to improve area and power. The SA-DCT packing steps are done using a minimal switching addressing scheme with guarded evaluation. All three modules have been synthesised targeting the WildCard-II FPGA benchmarking platform adopted by the MPEG-4 Part9 reference hardware group

    Image Processing Using FPGAs

    Get PDF
    This book presents a selection of papers representing current research on using field programmable gate arrays (FPGAs) for realising image processing algorithms. These papers are reprints of papers selected for a Special Issue of the Journal of Imaging on image processing using FPGAs. A diverse range of topics is covered, including parallel soft processors, memory management, image filters, segmentation, clustering, image analysis, and image compression. Applications include traffic sign recognition for autonomous driving, cell detection for histopathology, and video compression. Collectively, they represent the current state-of-the-art on image processing using FPGAs

    Energy-efficient acceleration of MPEG-4 compression tools

    Get PDF
    We propose novel hardware accelerator architectures for the most computationally demanding algorithms of the MPEG-4 video compression standard-motion estimation, binary motion estimation (for shape coding), and the forward/inverse discrete cosine transforms (incorporating shape adaptive modes). These accelerators have been designed using general low-energy design philosophies at the algorithmic/architectural abstraction levels. The themes of these philosophies are avoiding waste and trading area/performance for power and energy gains. Each core has been synthesised targeting TSMC 0.09 μm TCBN90LP technology, and the experimental results presented in this paper show that the proposed cores improve upon the prior art

    SYSTEM-ON-A-CHIP (SOC)-BASED HARDWARE ACCELERATION FOR HUMAN ACTION RECOGNITION WITH CORE COMPONENTS

    Get PDF
    Today, the implementation of machine vision algorithms on embedded platforms or in portable systems is growing rapidly due to the demand for machine vision in daily human life. Among the applications of machine vision, human action and activity recognition has become an active research area, and market demand for providing integrated smart security systems is growing rapidly. Among the available approaches, embedded vision is in the top tier; however, current embedded platforms may not be able to fully exploit the potential performance of machine vision algorithms, especially in terms of low power consumption. Complex algorithms can impose immense computation and communication demands, especially action recognition algorithms, which require various stages of preprocessing, processing and machine learning blocks that need to operate concurrently. The market demands embedded platforms that operate with a power consumption of only a few watts. Attempts have been mad to improve the performance of traditional embedded approaches by adding more powerful processors; this solution may solve the computation problem but increases the power consumption. System-on-a-chip eld-programmable gate arrays (SoC-FPGAs) have emerged as a major architecture approach for improving power eciency while increasing computational performance. In a SoC-FPGA, an embedded processor and an FPGA serving as an accelerator are fabricated in the same die to simultaneously improve power consumption and performance. Still, current SoC-FPGA-based vision implementations either shy away from supporting complex and adaptive vision algorithms or operate at very limited resolutions due to the immense communication and computation demands. The aim of this research is to develop a SoC-based hardware acceleration workflow for the realization of advanced vision algorithms. Hardware acceleration can improve performance for highly complex mathematical calculations or repeated functions. The performance of a SoC system can thus be improved by using hardware acceleration method to accelerate the element that incurs the highest performance overhead. The outcome of this research could be used for the implementation of various vision algorithms, such as face recognition, object detection or object tracking, on embedded platforms. The contributions of SoC-based hardware acceleration for hardware-software codesign platforms include the following: (1) development of frameworks for complex human action recognition in both 2D and 3D; (2) realization of a framework with four main implemented IPs, namely, foreground and background subtraction (foreground probability), human detection, 2D/3D point-of-interest detection and feature extraction, and OS-ELM as a machine learning algorithm for action identication; (3) use of an FPGA-based hardware acceleration method to resolve system bottlenecks and improve system performance; and (4) measurement and analysis of system specications, such as the acceleration factor, power consumption, and resource utilization. Experimental results show that the proposed SoC-based hardware acceleration approach provides better performance in terms of the acceleration factor, resource utilization and power consumption among all recent works. In addition, a comparison of the accuracy of the framework that runs on the proposed embedded platform (SoCFPGA) with the accuracy of other PC-based frameworks shows that the proposed approach outperforms most other approaches

    Energy efficient enabling technologies for semantic video processing on mobile devices

    Get PDF
    Semantic object-based processing will play an increasingly important role in future multimedia systems due to the ubiquity of digital multimedia capture/playback technologies and increasing storage capacity. Although the object based paradigm has many undeniable benefits, numerous technical challenges remain before the applications becomes pervasive, particularly on computational constrained mobile devices. A fundamental issue is the ill-posed problem of semantic object segmentation. Furthermore, on battery powered mobile computing devices, the additional algorithmic complexity of semantic object based processing compared to conventional video processing is highly undesirable both from a real-time operation and battery life perspective. This thesis attempts to tackle these issues by firstly constraining the solution space and focusing on the human face as a primary semantic concept of use to users of mobile devices. A novel face detection algorithm is proposed, which from the outset was designed to be amenable to be offloaded from the host microprocessor to dedicated hardware, thereby providing real-time performance and reducing power consumption. The algorithm uses an Artificial Neural Network (ANN), whose topology and weights are evolved via a genetic algorithm (GA). The computational burden of the ANN evaluation is offloaded to a dedicated hardware accelerator, which is capable of processing any evolved network topology. Efficient arithmetic circuitry, which leverages modified Booth recoding, column compressors and carry save adders, is adopted throughout the design. To tackle the increased computational costs associated with object tracking or object based shape encoding, a novel energy efficient binary motion estimation architecture is proposed. Energy is reduced in the proposed motion estimation architecture by minimising the redundant operations inherent in the binary data. Both architectures are shown to compare favourable with the relevant prior art
    corecore