363 research outputs found

    A Comparative Study of Different Reconstruction Schemes for a Reconstructed Discontinuous Galerkin Method on Arbitrary Grids

    Full text link
    A comparative study of different reconstruction schemes for a reconstruction-based discontinuous Galerkin, termed RDG(P1P2) method is performed for compressible flow problems on arbitrary grids. The RDG method is designed to enhance the accuracy of the discontinuous Galerkin method by increasing the order of the underlying polynomial solution via a reconstruction scheme commonly used in the finite volume method. Both Green-Gauss and least-squares reconstruction methods and a least-squares recovery method are implemented to obtain a quadratic polynomial representation of the underlying discontinuous Galerkin linear polynomial solution on each cell. These three reconstruction/recovery methods are compared for a variety of compressible flow problems on arbitrary meshes to access their accuracy and robustness. The numerical results demonstrate that all three reconstruction methods can significantly improve the accuracy of the underlying second-order DG method, although the least-squares reconstruction method provides the best performance in terms of both accuracy and robustness

    A reconstructed discontinuous Galerkin method based on a Hierarchical WENO reconstruction for compressible flows on tetrahedral grids

    Get PDF
    A reconstructed discontinuous Galerkin (RDG) method based on a hierarchical WENO reconstruction, termed HWENO (P1P2) in this paper, designed not only to enhance the accuracy of discontinuous Galerkin methods but also to ensure the nonlinear stability of the RDG method, is presented for solving the compressible Euler equations on tetrahedral grids. In this HWENO (P1P2) method, a quadratic polynomial solution (P-2) is first reconstructed using a Hermite WENO reconstruction from the underlying linear polynomial (P-1) discontinuous Galerkin solution to ensure the linear stability of the RDG method and to improve the efficiency of the underlying DG method. By taking advantage of handily available and yet invaluable information, namely the derivatives in the DG formulation, the stencils used in the reconstruction involve only von Neumann neighborhood (adjacent face-neighboring cells) and thus are compact. The first derivatives of the quadratic polynomial solution are then reconstructed using a WENO reconstruction in order to eliminate spurious oscillations in the vicinity of strong discontinuities, thus ensuring the nonlinear stability of the RDG method. The developed HWENO (P1P2) method is used to compute a variety of flow problems on tetrahedral meshes to demonstrate its accuracy, robustness, and non-oscillatory property. The numerical experiments indicate that the HWENO (P1P2) method is able to capture shock waves within one cell without any spurious oscillations, and achieve the designed third-order of accuracy: one order accuracy higher than the underlying DG method

    Hybrid Spectral Difference/Embedded Finite Volume Method for Conservation Laws

    Full text link
    A novel hybrid spectral difference/embedded finite volume method is introduced in order to apply a discontinuous high-order method for large scale engineering applications involving discontinuities in the flows with complex geometries. In the proposed hybrid approach, the finite volume (FV) element, consisting of structured FV subcells, is embedded in the base hexahedral element containing discontinuity, and an FV based high-order shock-capturing scheme is employed to overcome the Gibbs phenomena. Thus, a discontinuity is captured at the resolution of FV subcells within an embedded FV element. In the smooth flow region, the SD element is used in the base hexahedral element. Then, the governing equations are solved by the SD method. The SD method is chosen for its low numerical dissipation and computational efficiency preserving high-order accurate solutions. The coupling between the SD element and the FV element is achieved by the globally conserved mortar method. In this paper, the 5th-order WENO scheme with the characteristic decomposition is employed as the shock-capturing scheme in the embedded FV element, and the 5th-order SD method is used in the smooth flow field. The order of accuracy study and various 1D and 2D test cases are carried out, which involve the discontinuities and vortex flows. Overall, it is shown that the proposed hybrid method results in comparable or better simulation results compared with the standalone WENO scheme when the same number of solution DOF is considered in both SD and FV elements.Comment: 27 pages, 17 figures, 2 tables, Accepted for publication in the Journal of Computational Physics, April 201

    Reconstructed discontinuous Galerkin methods for high Reynolds number flows

    Get PDF
    Reconstructed Discontinuous Galerkin (rDG) methods aim to provide a unified framework between Discontinuous Galerkin (DG) and finite volume (FV) methods. This unification leads to a new family of spatial discretization schemes from order three upwards. The first of these new schemes is the rDG(P1P2) method, which represents the solution on each element as linear functions while reconstructing quadratic contributions to compute the fluxes inside the element and over the faces. For the rDG(P1P2) method, two different reconstruction methods were implemented. The first of these reconstruction methods is a least-squares based reconstruction. For this reconstruction, an inverse distance weighting was introduced to improve the discretization error in anisotropic mesh regions, as well as an extended reconstruction stencil variant, which aims to stabilise the reconstruction on simplicial meshes. The inclusion of an inverse distance weighting was found to be beneficial for high Reynolds number flows on the example of the two-dimensional zero pressure gradient flat plate. As a second method, a variational reconstruction method was implemented. For the variational reconstruction rDG methods it was shown that they can offer significantly reduced discretization errors compared to DG methods for smooth flows. It was shown on the example of a method of manufactured solutions, that all implemented methods reach their designed order of accuracy and can provide lower spatial discretization errors than a DG method of a comparable order on regular and randomly perturbed hexahedral meshes as well as on tetrahedral meshes. The rDG methods was applied to several two and three-dimensional RANS test cases. For these test cases, a stronger influence of the Reynolds number on the discretization error of rDG methods was found compared to the weaker influence observed for DG methods. For all test-cases, it was shown that rDG methods converge faster on the same mesh, however, yield a higher absolute error, due to the lower number of degrees of freedom compared to native DG methods

    Assessment of high-order finite volume methods on unstructured meshes for RANS solutions of aeronautical configurations.

    Get PDF
    This paper is concerned with the application of k-exact finite volume methods for compressible Reynolds-Averaged Navier-Stokes computations of flows around aeronautical configurations including the NACA0012, RAE2822, MDA30P30N, ONERA-M6, CRM and DLR-F11. High-order spatial discretisation is obtained with the Weighted Essentially Non-Oscillatory and the Monotone-Upstream Central Scheme for Conservation Laws methods on hybrid unstructured grids in two- and three- dimensions. Schemes of fifth, third and second order comprise the foundation of the analysis, with main findings suggesting that enhanced accuracy can be obtained with at least a third-order scheme. Steady state solutions are achieved with the implicit approximately factored Lower-Upper Symmetric Gauss-Seidel time advancing technique, convergence properties of each scheme are discussed. The Spalart-Allmaras turbulence model is employed where its discretisation with respect to the high-order framework is assessed. A low-Mach number treatment technique is studied, where recovery of accuracy in low speed regions is exemplified. Results are compared with referenced data and discussed in terms of accuracy, grid dependence and computational budget

    Low-Mach number treatment for Finite-Volume schemes on unstructured meshes

    Get PDF
    The paper presents a low-Mach number (LM) treatment technique for high-order, Finite-Volume (FV) schemes for the Euler and the compressible Navier–Stokes equations. We concentrate our efforts on the implementation of the LM treatment for the unstructured mesh framework, both in two and three spatial dimensions, and highlight the key differences compared with the method for structured grids. The main scope of the LM technique is to at least maintain the accuracy of low speed regions without introducing artefacts and hampering the global solution and stability of the numerical scheme. Two families of spatial schemes are considered within the k-exact FV framework: the Monotonic Upstream-Centered Scheme for Conservation Laws (MUSCL) and the Weighted Essentially Non-Oscillatory (WENO). The simulations are advanced in time with an explicit third-order Strong Stability Preserving (SSP) Runge–Kutta method. Several flow problems are considered for inviscid and turbulent flows where the obtained solutions are compared with referenced data. The associated benefits of the method are analysed in terms of overall accuracy, dissipation characteristics, order of scheme, spatial resolution and grid composition

    Differential formulation of discontinuous Galerkin and related methods for compressible Euler and Navier-Stokes equations

    Get PDF
    A new approach to high-order accuracy for the numerical solution of conservation laws introduced by Huynh and extended to simplexes by the current work is renamed CPR (correction procedure or collocation penalty via reconstruction). The CPR approach employs the differential form of the equation and accounts for the jumps in flux values at the cell boundaries by a correction procedure. In addition to being simple and economical, it unifies several existing methods including discontinuous Galerkin (DG), staggered grid, spectral volume (SV), and spectral difference (SD). The approach is then extended to diffusion equation and Navier-Stokes equations. In the discretization of the diffusion terms, the BR2 (Bassi and Rebay), interior penalty, compact DG (CDG), and I-continuous approaches are used. The first three of these approaches, originally derived using the integral formulation, were recast here in the CPR framework, whereas the I-continuous scheme, originally derived for a quadrilateral mesh, was extended to a triangular mesh. The current work also includes a study of high-order curve boundaries representations. A new boundary representation based on the Bezier curve is then developed and analyzed, which is shown to have several advantages for complicated geometries. To further enhance the efficiency, the capability of h/p mesh adaptation is developed for the CPR solver. The adaptation is driven by an efficient multi-p a posteriori error estimator. P-adaptation is applied to smooth regions of the flow field while h-adaptation targets the non-smooth regions, identified by accuracy-preserving TVD marker. Several numerical tests are presented to demonstrate the capability of the technique

    Implicit High-Order Flux Reconstruction Solver for High-Speed Compressible Flows

    Full text link
    The present paper addresses the development and implementation of the first high-order Flux Reconstruction (FR) solver for high-speed flows within the open-source COOLFluiD (Computational Object-Oriented Libraries for Fluid Dynamics) platform. The resulting solver is fully implicit and able to simulate compressible flow problems governed by either the Euler or the Navier-Stokes equations in two and three dimensions. Furthermore, it can run in parallel on multiple CPU-cores and is designed to handle unstructured grids consisting of both straight and curved edged quadrilateral or hexahedral elements. While most of the implementation relies on state-of-the-art FR algorithms, an improved and more case-independent shock capturing scheme has been developed in order to tackle the first viscous hypersonic simulations using the FR method. Extensive verification of the FR solver has been performed through the use of reproducible benchmark test cases with flow speeds ranging from subsonic to hypersonic, up to Mach 17.6. The obtained results have been favorably compared to those available in literature. Furthermore, so-called super-accuracy is retrieved for certain cases when solving the Euler equations. The strengths of the FR solver in terms of computational accuracy per degree of freedom are also illustrated. Finally, the influence of the characterizing parameters of the FR method as well as the the influence of the novel shock capturing scheme on the accuracy of the developed solver is discussed
    • …
    corecore