213 research outputs found

    Wireless tools for neuromodulation

    Get PDF
    Epilepsy is a spectrum of diseases characterized by recurrent seizures. It is estimated that 50 million individuals worldwide are affected and 30% of cases are medically refractory or drug resistant. Vagus nerve stimulation (VNS) and deep brain stimulation (DBS) are the only FDA approved device based therapies. Neither therapy offers complete seizure freedom in a majority of users. Novel methodologies are needed to better understand mechanisms and chronic nature of epilepsy. Most tools for neuromodulation in rodents are tethered. The few wireless devices use batteries or are inductively powered. The tether restricts movement, limits behavioral tests, and increases the risk of infection. Batteries are large and heavy with a limited lifetime. Inductive powering suffers from rapid efficiency drops due to alignment mismatches and increased distances. Miniature wireless tools that offer behavioral freedom, data acquisition, and stimulation are needed. This dissertation presents a platform of electrical, optical and radiofrequency (RF) technologies for device based neuromodulation. The platform can be configured with features including: two channels differential recording, one channel electrical stimulation, and one channel optical stimulation. Typical device operation consumes less than 4 mW. The analog front end has a bandwidth of 0.7 Hz - 1 kHz and a gain of 60 dB, and the constant current driver provides biphasic electrical stimulation. For use with optogenetics, the deep brain optical stimulation module provides 27 mW/mm2 of blue light (473 nm) with 21.01 mA. Pairing of stimulating and recording technologies allows closed-loop operation. A wireless powering cage is designed using the resonantly coupled filter energy transfer (RCFET) methodology. RF energy is coupled through magnetic resonance. The cage has a PTE ranging from 1.8-6.28% for a volume of 11 x 11 x 11 in3. This is sufficient to chronically house subjects. The technologies are validated through various in vivo preparations. The tools are designed to study epilepsy, SUDEP, and urinary incontinence but can be configured for other studies. The broad application of these technologies can enable the scientific community to better study chronic diseases and closed-loop therapies

    Improving the mechanistic study of neuromuscular diseases through the development of a fully wireless and implantable recording device

    Get PDF
    Neuromuscular diseases manifest by a handful of known phenotypes affecting the peripheral nerves, skeletal muscle fibers, and neuromuscular junction. Common signs of these diseases include demyelination, myasthenia, atrophy, and aberrant muscle activity—all of which may be tracked over time using one or more electrophysiological markers. Mice, which are the predominant mammalian model for most human diseases, have been used to study congenital neuromuscular diseases for decades. However, our understanding of the mechanisms underlying these pathologies is still incomplete. This is in part due to the lack of instrumentation available to easily collect longitudinal, in vivo electrophysiological activity from mice. There remains a need for a fully wireless, batteryless, and implantable recording system that can be adapted for a variety of electrophysiological measurements and also enable long-term, continuous data collection in very small animals. To meet this need a miniature, chronically implantable device has been developed that is capable of wirelessly coupling energy from electromagnetic fields while implanted within a body. This device can both record and trigger bioelectric events and may be chronically implanted in rodents as small as mice. This grants investigators the ability to continuously observe electrophysiological changes corresponding to disease progression in a single, freely behaving, untethered animal. The fully wireless closed-loop system is an adaptable solution for a range of long-term mechanistic and diagnostic studies in rodent disease models. Its high level of functionality, adjustable parameters, accessible building blocks, reprogrammable firmware, and modular electrode interface offer flexibility that is distinctive among fully implantable recording or stimulating devices. The key significance of this work is that it has generated novel instrumentation in the form of a fully implantable bioelectric recording device having a much higher level of functionality than any other fully wireless system available for mouse work. This has incidentally led to contributions in the areas of wireless power transfer and neural interfaces for upper-limb prosthesis control. Herein the solution space for wireless power transfer is examined including a close inspection of far-field power transfer to implanted bioelectric sensors. Methods of design and characterization for the iterative development of the device are detailed. Furthermore, its performance and utility in remote bioelectric sensing applications is demonstrated with humans, rats, healthy mice, and mouse models for degenerative neuromuscular and motoneuron diseases

    Wireless Telemetry System for Implantable Sensors

    Get PDF
    Advanced testing of medical treatments involves experimentation on small laboratory animals, such as genetically modified mice. These subjects are used to help researchers develop medication and cures for humans. To understand the effects of the treatments, innovative telemetry systems are developed, that enable remote real-time cardiac monitoring. The latest research in the field of cardiac monitoring has revealed two major limitations with wireless implantable systems: a) the current size of implantable electronics limits the physical size of the system to larger subjects; and b) the systems only interface with one sensor type (e.g., pressure sensor only). This research focuses on the design of a wireless telemetry system architecture, intended to retrieve blood pressure and volume data. A physical prototype is created that is 2.475 cm3 and weights 4.01 g. This thesis will enable a path towards miniaturization, leading to the incorporation of a wireless system into small laboratory animals

    Modern Telemetry

    Get PDF
    Telemetry is based on knowledge of various disciplines like Electronics, Measurement, Control and Communication along with their combination. This fact leads to a need of studying and understanding of these principles before the usage of Telemetry on selected problem solving. Spending time is however many times returned in form of obtained data or knowledge which telemetry system can provide. Usage of telemetry can be found in many areas from military through biomedical to real medical applications. Modern way to create a wireless sensors remotely connected to central system with artificial intelligence provide many new, sometimes unusual ways to get a knowledge about remote objects behaviour. This book is intended to present some new up to date accesses to telemetry problems solving by use of new sensors conceptions, new wireless transfer or communication techniques, data collection or processing techniques as well as several real use case scenarios describing model examples. Most of book chapters deals with many real cases of telemetry issues which can be used as a cookbooks for your own telemetry related problems

    Real-time signal detection and classification algorithms for body-centered systems

    Full text link
    El principal motivo por el cual los sistemas de comunicación en el entrono corporal se desean con el objetivo de poder obtener y procesar señales biométricas para monitorizar e incluso tratar una condición médica sea ésta causada por una enfermedad o el rendimiento de un atleta. Dado que la base de estos sistemas está en la sensorización y el procesado, los algoritmos de procesado de señal son una parte fundamental de los mismos. Esta tesis se centra en los algoritmos de tratamiento de señales en tiempo real que se utilizan tanto para monitorizar los parámetros como para obtener la información que resulta relevante de las señales obtenidas. En la primera parte se introduce los tipos de señales y sensores en los sistemas en el entrono corporal. A continuación se desarrollan dos aplicaciones concretas de los sistemas en el entorno corporal así como los algoritmos que en las mismas se utilizan. La primera aplicación es el control de glucosa en sangre en pacientes con diabetes. En esta parte se desarrolla un método de detección mediante clasificación de patronones de medidas erróneas obtenidas con el monitor contínuo comercial "Minimed CGMS". La segunda aplicacióin consiste en la monitorizacióni de señales neuronales. Descubrimientos recientes en este campo han demostrado enormes posibilidades terapéuticas (por ejemplo, pacientes con parálisis total que son capaces de comunicarse con el entrono gracias a la monitorizacióin e interpretación de señales provenientes de sus neuronas) y también de entretenimiento. En este trabajo, se han desarrollado algoritmos de detección, clasificación y compresión de impulsos neuronales y dichos algoritmos han sido evaluados junto con técnicas de transmisión inalámbricas que posibiliten una monitorización sin cables. Por último, se dedica un capítulo a la transmisión inalámbrica de señales en los sistemas en el entorno corporal. En esta parte se estudia las condiciones del canal que presenta el entorno corporal para la transmisión de sTraver Sebastiá, L. (2012). Real-time signal detection and classification algorithms for body-centered systems [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/16188Palanci

    ТЕЛЕМЕТРИЧЕСКАЯ СВЕРХВЫСОКОЧАСТОТНАЯ ЭКГ-ПРИСТАВКА С ПОТОЧНЫМ КОНВЕЙЕРНЫМ РАСПОЗНАВАНИЕМ ОБРАЗОВ В РЕЖИМЕ РЕАЛЬНОГО ВРЕМЕНИ

    Get PDF
    Разработана технология распознавания образов в режиме реального времени для диагностики и физиологической электроморфологической кластеризации электрокардиограмм с использованием оцифровки по критерию бинаризации контраста и трансляцией сигнала с дигитайзера, выполненного в конструкте приставки к портативному электрокардиографу, по сверхвысокочастотному / радиочастотному каналу (1.2 ГГц). Обработка телеметрической информации осуществляется после поступления принятого ресивером канала через тюнер с АЦП на ЭВМ. Исходно данная система реализована для анализа многоканальных данных ЭЭГ, однако впоследствии полностью адаптирована для анализа данных c самопишущих приборов ЭКГ, работающих по тому же принципу аналоговой электрофизиологической записи

    ТЕЛЕМЕТРИЧЕСКАЯ СВЕРХВЫСОКОЧАСТОТНАЯ ЭКГ-ПРИСТАВКА С ПОТОЧНЫМ КОНВЕЙЕРНЫМ РАСПОЗНАВАНИЕМ ОБРАЗОВ В РЕЖИМЕ РЕАЛЬНОГО ВРЕМЕНИ

    Get PDF
    Разработана технология распознавания образов в режиме реального времени для диагностики и физиологической электроморфологической кластеризации электрокардиограмм с использованием оцифровки по критерию бинаризации контраста и трансляцией сигнала с дигитайзера, выполненного в конструкте приставки к портативному электрокардиографу, по сверхвысокочастотному / радиочастотному каналу (1.2 ГГц). Обработка телеметрической информации осуществляется после поступления принятого ресивером канала через тюнер с АЦП на ЭВМ. Исходно данная система реализована для анализа многоканальных данных ЭЭГ, однако впоследствии полностью адаптирована для анализа данных c самопишущих приборов ЭКГ, работающих по тому же принципу аналоговой электрофизиологической записи

    A Three – tier bio-implantable sensor monitoring and communications platform

    Get PDF
    One major hindrance to the advent of novel bio-implantable sensor technologies is the need for a reliable power source and data communications platform capable of continuously, remotely, and wirelessly monitoring deeply implantable biomedical devices. This research proposes the feasibility and potential of combining well established, ‘human-friendly' inductive and ultrasonic technologies to produce a proof-of-concept, generic, multi-tier power transfer and data communication platform suitable for low-power, periodically-activated implantable analogue bio-sensors. In the inductive sub-system presented, 5 W of power is transferred across a 10 mm gap between a single pair of 39 mm (primary) and 33 mm (secondary) circular printed spiral coils (PSCs). These are printed using an 8000 dpi resolution photoplotter and fabricated on PCB by wet-etching, to the maximum permissible density. Our ultrasonic sub-system, consisting of a single pair of Pz21 (transmitter) and Pz26 (receiver) piezoelectric PZT ceramic discs driven by low-frequency, radial/planar excitation (-31 mode), without acoustic matching layers, is also reported here for the first time. The discs are characterised by propagation tank test and directly driven by the inductively coupled power to deliver 29 μW to a receiver (implant) employing a low voltage start-up IC positioned 70 mm deep within a homogeneous liquid phantom. No batteries are used. The deep implant is thus intermittently powered every 800 ms to charge a capacitor which enables its microcontroller, operating with a 500 kHz clock, to transmit a single nibble (4 bits) of digitized sensed data over a period of ~18 ms from deep within the phantom, to the outside world. A power transfer efficiency of 83% using our prototype CMOS logic-gate IC driver is reported for the inductively coupled part of the system. Overall prototype system power consumption is 2.3 W with a total power transfer efficiency of 1% achieved across the tiers

    A compact dual-band implantable antenna for wireless biotelemetry in arteriovenous grafts

    Get PDF
    Arteriovenous grafts (AVGs) are indispensable life-saving implants for chronic kidney disease (CKD) patients undergoing hemodialysis. However, AVGs will often fail due to postoperative complications such as cellular accumulation termed restenosis, blood clots, and infections, which are dominant causes of morbidity and mortality. A new generation of hemodialysis implants equipped with biosensors and multi-band antennas for wireless power and telemetry systems that can detect specific pathological parameters and report AVGs’ patency would be transformative for CKD. Our study proposes a compact dual-band implantable antenna for hemodialysis monitoring applications. It operates in 1.4 GHz and 2.45 GHz for wireless power transfer and biotelemetry purposes. The miniaturized antenna with a current size of 5 × 5 × 0.635 mm 3 exhibits wide bandwidth (300 MHz at 1.4 GHz band and 380 MHz at 2.45 GHz band), along with good impedance matching at two resonance frequencies. In addition, simulations are performed separately in a three-layer homogenous phantom and a realistic human body model. Measurements of the proposed antenna are evaluated in minced pork. The measured results of the fabricated antenna prototype are closely harmonized with the simulation ones, and the effect of different proportions of fat tissue in pork mince was analyzed, to verify the sensitivity of the antenna to the contacting medium. The specific absorption rate (SAR) and link budget calculation are also analyzed. Finally, the wireless biotelemetry function of the proposed antenna is realized and visualized by adopting a pair of nRF24L01 wireless transceivers, and sustainable and stable wireless data transmission characteristics are shown at a high data rate of 2 Mbps with up to 20 cm transmission distance
    corecore