2,307 research outputs found

    Design for energy-efficient and reliable fog-assisted healthcare IoT systems

    Get PDF
    Cardiovascular disease and diabetes are two of the most dangerous diseases as they are the leading causes of death in all ages. Unfortunately, they cannot be completely cured with the current knowledge and existing technologies. However, they can be effectively managed by applying methods of continuous health monitoring. Nonetheless, it is difficult to achieve a high quality of healthcare with the current health monitoring systems which often have several limitations such as non-mobility support, energy inefficiency, and an insufficiency of advanced services. Therefore, this thesis presents a Fog computing approach focusing on four main tracks, and proposes it as a solution to the existing limitations. In the first track, the main goal is to introduce Fog computing and Fog services into remote health monitoring systems in order to enhance the quality of healthcare. In the second track, a Fog approach providing mobility support in a real-time health monitoring IoT system is proposed. The handover mechanism run by Fog-assisted smart gateways helps to maintain the connection between sensor nodes and the gateways with a minimized latency. Results show that the handover latency of the proposed Fog approach is 10%-50% less than other state-of-the-art mobility support approaches. In the third track, the designs of four energy-efficient health monitoring IoT systems are discussed and developed. Each energy-efficient system and its sensor nodes are designed to serve a specific purpose such as glucose monitoring, ECG monitoring, or fall detection; with the exception of the fourth system which is an advanced and combined system for simultaneously monitoring many diseases such as diabetes and cardiovascular disease. Results show that these sensor nodes can continuously work, depending on the application, up to 70-155 hours when using a 1000 mAh lithium battery. The fourth track mentioned above, provides a Fog-assisted remote health monitoring IoT system for diabetic patients with cardiovascular disease. Via several proposed algorithms such as QT interval extraction, activity status categorization, and fall detection algorithms, the system can process data and detect abnormalities in real-time. Results show that the proposed system using Fog services is a promising approach for improving the treatment of diabetic patients with cardiovascular disease

    Edge-centric Optimization of Multi-modal ML-driven eHealth Applications

    Full text link
    Smart eHealth applications deliver personalized and preventive digital healthcare services to clients through remote sensing, continuous monitoring, and data analytics. Smart eHealth applications sense input data from multiple modalities, transmit the data to edge and/or cloud nodes, and process the data with compute intensive machine learning (ML) algorithms. Run-time variations with continuous stream of noisy input data, unreliable network connection, computational requirements of ML algorithms, and choice of compute placement among sensor-edge-cloud layers affect the efficiency of ML-driven eHealth applications. In this chapter, we present edge-centric techniques for optimized compute placement, exploration of accuracy-performance trade-offs, and cross-layered sense-compute co-optimization for ML-driven eHealth applications. We demonstrate the practical use cases of smart eHealth applications in everyday settings, through a sensor-edge-cloud framework for an objective pain assessment case study

    Remote health monitoring systems for elderly people: a survey

    Get PDF
    This paper addresses the growing demand for healthcare systems, particularly among the elderly population. The need for these systems arises from the desire to enable patients and seniors to live independently in their homes without relying heavily on their families or caretakers. To achieve substantial improvements in healthcare, it is essential to ensure the continuous development and availability of information technologies tailored explicitly for patients and elderly individuals. The primary objective of this study is to comprehensively review the latest remote health monitoring systems, with a specific focus on those designed for older adults. To facilitate a comprehensive understanding, we categorize these remote monitoring systems and provide an overview of their general architectures. Additionally, we emphasize the standards utilized in their development and highlight the challenges encountered throughout the developmental processes. Moreover, this paper identifies several potential areas for future research, which promise further advancements in remote health monitoring systems. Addressing these research gaps can drive progress and innovation, ultimately enhancing the quality of healthcare services available to elderly individuals. This, in turn, empowers them to lead more independent and fulfilling lives while enjoying the comforts and familiarity of their own homes. By acknowledging the importance of healthcare systems for the elderly and recognizing the role of information technologies, we can address the evolving needs of this population. Through ongoing research and development, we can continue to enhance remote health monitoring systems, ensuring they remain effective, efficient, and responsive to the unique requirements of elderly individuals

    Cybersecurity and the Digital Health: An Investigation on the State of the Art and the Position of the Actors

    Get PDF
    Cybercrime is increasingly exposing the health domain to growing risk. The push towards a strong connection of citizens to health services, through digitalization, has undisputed advantages. Digital health allows remote care, the use of medical devices with a high mechatronic and IT content with strong automation, and a large interconnection of hospital networks with an increasingly effective exchange of data. However, all this requires a great cybersecurity commitment—a commitment that must start with scholars in research and then reach the stakeholders. New devices and technological solutions are increasingly breaking into healthcare, and are able to change the processes of interaction in the health domain. This requires cybersecurity to become a vital part of patient safety through changes in human behaviour, technology, and processes, as part of a complete solution. All professionals involved in cybersecurity in the health domain were invited to contribute with their experiences. This book contains contributions from various experts and different fields. Aspects of cybersecurity in healthcare relating to technological advance and emerging risks were addressed. The new boundaries of this field and the impact of COVID-19 on some sectors, such as mhealth, have also been addressed. We dedicate the book to all those with different roles involved in cybersecurity in the health domain

    Highly-efficient fog-based deep learning AAL fall detection system

    Full text link
    [EN] Falls is one of most concerning accidents in aged population due to its high frequency and serious repercussion; thus, quick assistance is critical to avoid serious health consequences. There are several Ambient Assisted Living (AAL) solutions that rely on the technologies of the Internet of Things (IoT), Cloud Computing and Machine Learning (ML). Recently, Deep Learning (DL) have been included for its high potential to improve accuracy on fall detection. Also, the use of fog devices for the ML inference (detecting falls) spares cloud drawback of high network latency, non-appropriate for delay-sensitive applications such as fall detectors. Though, current fall detection systems lack DL inference on the fog, and there is no evidence of it in real environments, nor documentation regarding the complex challenge of the deployment. Since DL requires considerable resources and fog nodes are resource-limited, a very efficient deployment and resource usage is critical. We present an innovative highly-efficient intelligent system based on a fog-cloud computing architecture to timely detect falls using DL technics deployed on resource-constrained devices (fog nodes). We employ a wearable tri-axial accelerometer to collect patient monitoring data. In the fog, we propose a smart-IoT-Gateway architecture to support the remote deployment and management of DL models. We deploy two DL models (LSTM/GRU) employing virtualization to optimize resources and evaluate their performance and inference time. The results prove the effectiveness of our fall system, that provides a more timely and accurate response than traditional fall detector systems, higher efficiency, 98.75% accuracy, lower delay, and service improvement.This research was supported by the Ecuadorian Government through the Secretary of Higher Education, Science, Technology, and Innovation (SENESCYT) and has received funding from the European Union's Horizon 2020 research and innovation program as part of the ACTIVAGE project under Grant 732679.Sarabia-Jácome, D.; Usach, R.; Palau Salvador, CE.; Esteve Domingo, M. (2020). Highly-efficient fog-based deep learning AAL fall detection system. Internet of Things. 11:1-19. https://doi.org/10.1016/j.iot.2020.100185S11911“World Population Ageing.” [Online]. Available: http://www.un.org/esa/population/publications/worldageing19502050/. [Accessed: 23-Sep-2018].“Falls, ” World Health Organization. [Online]. Available: http://www.who.int/news-room/fact-sheets/detail/falls. [Accessed: 20-Sep-2018].Rashidi, P., & Mihailidis, A. (2013). A Survey on Ambient-Assisted Living Tools for Older Adults. IEEE Journal of Biomedical and Health Informatics, 17(3), 579-590. doi:10.1109/jbhi.2012.2234129Bousquet, J., Kuh, D., Bewick, M., Strandberg, T., Farrell, J., Pengelly, R., … Bringer, J. (2015). Operative definition of active and healthy ageing (AHA): Meeting report. Montpellier October 20–21, 2014. European Geriatric Medicine, 6(2), 196-200. doi:10.1016/j.eurger.2014.12.006“WHO | What is Healthy Ageing?”[Online]. Available: http://www.who.int/ageing/healthy-ageing/en/. [Accessed: 19-Sep-2018].Fei, X., Shah, N., Verba, N., Chao, K.-M., Sanchez-Anguix, V., Lewandowski, J., … Usman, Z. (2019). CPS data streams analytics based on machine learning for Cloud and Fog Computing: A survey. Future Generation Computer Systems, 90, 435-450. doi:10.1016/j.future.2018.06.042W. Zaremba, “Recurrent neural network regularization,” no. 2013, pp. 1–8, 2015.Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735-1780. doi:10.1162/neco.1997.9.8.1735J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated recurrent neural networks on sequence modeling,” pp. 1–9, 2014.N. Zerrouki, F. Harrou, Y. Sun, and A. Houacine, “Vision-based human action classification,” vol. 18, no. 12, pp. 5115–5121, 2018.Panahi, L., & Ghods, V. (2018). Human fall detection using machine vision techniques on RGB–D images. Biomedical Signal Processing and Control, 44, 146-153. doi:10.1016/j.bspc.2018.04.014Y. Li, K.C. Ho, and M. Popescu, “A microphone array system for automatic fall detection,” vol. 59, no. 2, pp. 1291–1301, 2012.Taramasco, C., Rodenas, T., Martinez, F., Fuentes, P., Munoz, R., Olivares, R., … Demongeot, J. (2018). A Novel Monitoring System for Fall Detection in Older People. IEEE Access, 6, 43563-43574. doi:10.1109/access.2018.2861331C. Wang et al., “Low-power fall detector using triaxial accelerometry and barometric pressure sensing,” vol. 12, no. 6, pp. 2302–2311, 2016.S.B. Khojasteh and E. De Cal, “Improving fall detection using an on-wrist wearable accelerometer,” pp. 1–28.Theodoridis, T., Solachidis, V., Vretos, N., & Daras, P. (2017). Human Fall Detection from Acceleration Measurements Using a Recurrent Neural Network. IFMBE Proceedings, 145-149. doi:10.1007/978-981-10-7419-6_25F. Sposaro and G. Tyson, “iFall : an android application for fall monitoring and response,” pp. 6119–6122, 2009.A. Ngu, Y. Wu, H. Zare, A.P. B, B. Yarbrough, and L. Yao, “Fall detection using smartwatch sensor data with accessor architecture,” vol. 2, pp. 81–93.P. Jantaraprim and P. Phukpattaranont, “Fall detection for the elderly using a support vector machine,” no. 1, pp. 484–490, 2012.Aziz, O., Musngi, M., Park, E. J., Mori, G., & Robinovitch, S. N. (2016). A comparison of accuracy of fall detection algorithms (threshold-based vs. machine learning) using waist-mounted tri-axial accelerometer signals from a comprehensive set of falls and non-fall trials. Medical & Biological Engineering & Computing, 55(1), 45-55. doi:10.1007/s11517-016-1504-yV. Carletti, A. Greco, A. Saggese, and M. Vento, “A smartphone-based system for detecting falls using anomaly detection,” vol. 6978, 2017, pp. 490–499.Yacchirema, D., de Puga, J. S., Palau, C., & Esteve, M. (2018). Fall detection system for elderly people using IoT and Big Data. Procedia Computer Science, 130, 603-610. doi:10.1016/j.procs.2018.04.11

    Home detection of freezing of gait using Support Vector Machines through a single waist-worn triaxial accelerometer

    Get PDF
    Among Parkinson’s disease (PD) symptoms, freezing of gait (FoG) is one of the most debilitating. To assess FoG, current clinical practice mostly employs repeated evaluations over weeks and months based on questionnaires, which may not accurately map the severity of this symptom. The use of a non-invasive system to monitor the activities of daily living (ADL) and the PD symptoms experienced by patients throughout the day could provide a more accurate and objective evaluation of FoG in order to better understand the evolution of the disease and allow for a more informed decision-making process in making adjustments to the patient’s treatment plan. This paper presents a new algorithm to detect FoG with a machine learning approach based on Support Vector Machines (SVM) and a single tri-axial accelerometer worn at the waist. The method is evaluated through the acceleration signals in an outpatient setting gathered from 21 PD patients at their home and evaluated under two different conditions: first, a generic model is tested by using a leave-one-out approach and, second, a personalised model that also uses part of the dataset from each patient. Results show a significant improvement in the accuracy of the personalised model compared to the generic model, showing enhancement in the specificity and sensitivity geometric mean (GM) of 7.2%. Furthermore, the SVM approach adopted has been compared to the most comprehensive FoG detection method currently in use (referred to as MBFA in this paper). Results of our novel generic method provide an enhancement of 11.2% in the GM compared to the MBFA generic model and, in the case of the personalised model, a 10% of improvement with respect to the MBFA personalised model. Thus, our results show that a machine learning approach can be used to monitor FoG during the daily life of PD patients and, furthermore, personalised models for FoG detection can be used to improve monitoring accuracy.Peer ReviewedPostprint (published version

    Towards fostering the role of 5G networks in the field of digital health

    Get PDF
    A typical healthcare system needs further participation with patient monitoring, vital signs sensors and other medical devices. Healthcare moved from a traditional central hospital to scattered patients. Healthcare systems receive help from emerging technology innovations such as fifth generation (5G) communication infrastructure: internet of things (IoT), machine learning (ML), and artificial intelligence (AI). Healthcare providers benefit from IoT capabilities to comfort patients by using smart appliances that improve the healthcare level they receive. These IoT smart healthcare gadgets produce massive data volume. It is crucial to use very high-speed communication networks such as 5G wireless technology with the increased communication bandwidth, data transmission efficiency and reduced communication delay and latency, thus leading to strengthen the precise requirements of healthcare big data utilities. The adaptation of 5G in smart healthcare networks allows increasing number of IoT devices that supplies an augmentation in network performance. This paper reviewed distinctive aspects of internet of medical things (IoMT) and 5G architectures with their future and present sides, which can lead to improve healthcare of patients in the near future

    Hardware/software co-design of fractal features based fall detection system

    Get PDF
    Falls are a leading cause of death in older adults and result in high levels of mortality, morbidity and immobility. Fall Detection Systems (FDS) are imperative for timely medical aid and have been known to reduce death rate by 80%. We propose a novel wearable sensor FDS which exploits fractal dynamics of fall accelerometer signals. Fractal dynamics can be used as an irregularity measure of signals and our work shows that it is a key discriminant for classification of falls from other activities of life. We design, implement and evaluate a hardware feature accelerator for computation of fractal features through multi-level wavelet transform on a reconfigurable embedded System on Chip, Zynq device for evaluating wearable accelerometer sensors. The proposed FDS utilises a hardware/software co-design approach with hardware accelerator for fractal features and software implementation of Linear Discriminant Analysis on an embedded ARM core for high accuracy and energy efficiency. The proposed system achieves 99.38% fall detection accuracy, 7.3× speed-up and 6.53× improvements in power consumption, compared to the software only execution with an overall performance per Watt advantage of 47.6×, while consuming low reconfigurable resources at 28.67%
    • …
    corecore