143 research outputs found

    Locality of three-qubit Greenberger-Horne-Zeilinger-symmetric states

    Full text link
    The hierarchy of nonlocality and entanglement in multipartite systems is one of the fundamental problems in quantum physics. Existing studies on this topic to date were limited to the entanglement classification according to the numbers of particles enrolled. Equivalence under stochastic local operations and classical communication provides a more detailed classification, e. g. the genuine three-qubit entanglement being divided into W and GHZ classes. We construct two families of local models for the three-qubit Greenberger-Horne-Zeilinger (GHZ)-symmetric states, whose entanglement classes have a complete description. The key technology of construction the local models in this work is the GHZ symmetrization on tripartite extensions of the optimal local-hidden-state models for Bell diagonal states. Our models show that entanglement and nonlocality are inequivalent for all the entanglement classes (biseparable, W, and GHZ) in three-qubit systems.Comment: 3 figures, 6 pages. Many spelling errors have been corrected. Submitted versio

    Device-independent tomography of multipartite quantum states

    Get PDF
    In the usual tomography of multipartite entangled quantum states one assumes that the measurement devices used in the laboratory are under perfect control of the experimenter. In this paper, using the so-called SWAP concept introduced recently, we show how one can remove this assumption in realistic experimental conditions and nevertheless be able to characterize the produced multipartite state based only on observed statistics. Such a black box tomography of quantum states is termed self-testing. As a function of the magnitude of the Bell violation, we are able to self-test emblematic multipartite quantum states such as the three-qubit W state, the three- and four-qubit Greenberger-Horne-Zeilinger states, and the four-qubit linear cluster state.Comment: See also the related work of arXiv:1407.576

    Exploring quantum properties of bipartite mixed states under coherent and incoherent basis

    Full text link
    Quantum coherence and quantum entanglement are two different manifestations of the superposition principle. In this article we show that the right choice of basis to be used to estimate coherence is the separable basis. The quantum coherence estimated using the Bell basis does not represent the coherence in the system, since there is a coherence in the system due to the choice of the basis states. We first compute the entanglement and quantum coherence in the two qubit mixed states prepared using the Bell states and one of the states from the computational basis. The quantum coherence is estimated using the l1-norm of coherence, the entanglement is measured using the concurrence and the mixedness is measured using the linear entropy. Then we estimate these quantities in the Bell basis and establish that coherence should be measured only in separable basis, whereas entanglement and mixedness can be measured in any basis. We then calculate the teleportation fidelity of these mixed states and find the regions where the states have a fidelity greater than the classical teleportation fidelity. We also examine the violation of the Bell-CHSH inequality to verify the quantum nonlocal correlations in the system. The estimation of the above mentioned quantum correlations, teleportation fidelity and the verification of Bell-CHSH inequality is also done for bipartite states obtained from the tripartite systems by the tracing out of one of their qubits. We find that for some of these states teleportation is possible even when the Bell-CHSH inequality is not violated, signifying that nonlocality is not a necessary condition for quantum teleportation.Comment: 18 pages, 3 figure
    • …
    corecore