91 research outputs found

    Particle swarm algorithm with adaptive constraint handling and integrated surrogate model for the management of petroleum fields

    Get PDF
    This paper deals with the development of effective techniques to automatically obtain the optimum management of petroleum fields aiming to increase the oil production during a given concession period of exploration. The optimization formulations of such a problem turn out to be highly multimodal, and may involve constraints. In this paper, we develop a robust particle swarm algorithm coupled with a novel adaptive constraint-handling technique to search for the global optimum of these formulations. However, this is a population-based method, which therefore requires a high number of evaluations of an objective function. Since the performance evaluation of a given management scheme requires a computationally expensive high-fidelity simulation, it is not practicable to use it directly to guide the search. In order to overcome this drawback, a Kriging surrogate model is used, which is trained offline via evaluations of a High-Fidelity simulator on a number of sample points. The optimizer then seeks the optimum of the surrogate model

    A new Taxonomy of Continuous Global Optimization Algorithms

    Full text link
    Surrogate-based optimization, nature-inspired metaheuristics, and hybrid combinations have become state of the art in algorithm design for solving real-world optimization problems. Still, it is difficult for practitioners to get an overview that explains their advantages in comparison to a large number of available methods in the scope of optimization. Available taxonomies lack the embedding of current approaches in the larger context of this broad field. This article presents a taxonomy of the field, which explores and matches algorithm strategies by extracting similarities and differences in their search strategies. A particular focus lies on algorithms using surrogates, nature-inspired designs, and those created by design optimization. The extracted features of components or operators allow us to create a set of classification indicators to distinguish between a small number of classes. The features allow a deeper understanding of components of the search strategies and further indicate the close connections between the different algorithm designs. We present intuitive analogies to explain the basic principles of the search algorithms, particularly useful for novices in this research field. Furthermore, this taxonomy allows recommendations for the applicability of the corresponding algorithms.Comment: 35 pages total, 28 written pages, 4 figures, 2019 Reworked Versio

    Uncertainty evaluation of reservoir simulation models using particle swarms and hierarchical clustering

    Get PDF
    History matching production data in finite difference reservoir simulation models has been and always will be a challenge for the industry. The principal hurdles that need to be overcome are finding a match in the first place and more importantly a set of matches that can capture the uncertainty range of the simulation model and to do this in as short a time as possible since the bottleneck in this process is the length of time taken to run the model. This study looks at the implementation of Particle Swarm Optimisation (PSO) in history matching finite difference simulation models. Particle Swarms are a class of evolutionary algorithms that have shown much promise over the last decade. This method draws parallels from the social interaction of swarms of bees, flocks of birds and shoals of fish. Essentially a swarm of agents are allowed to search the solution hyperspace keeping in memory each individual’s historical best position and iteratively improving the optimisation by the emergent interaction of the swarm. An intrinsic feature of PSO is its local search capability. A sequential niching variation of the PSO has been developed viz. Flexi-PSO that enhances the exploration and exploitation of the hyperspace and is capable of finding multiple minima. This new variation has been applied to history matching synthetic reservoir simulation models to find multiple distinct history 3 matches to try to capture the uncertainty range. Hierarchical clustering is then used to post-process the history match runs to reduce the size of the ensemble carried forward for prediction. The success of the uncertainty modelling exercise is then assessed by checking whether the production profile forecasts generated by the ensemble covers the truth case

    Performance Optimization in Video Transmission over ZigBee using Particle Swarm Optimization

    Get PDF
    IEEE 802.15.4 - ZigBee is a wireless sensor targeted at applications that require low data rate, low power and inexpensive. IEEE 802.15.4 is limited to a throughput of 250kbps and is designed to provide highly efficient connec-tivity. Hence, IEEE 802.15.4 is not designed to transfer large amounts of da-ta or MPEG-4 as its bandwidth is too low. In engineering and computer sci-ence often use optimization techniques, as do real environment applications in order to overcome complex issues and now this paper a solution has been accomplished by applying Particle Swarm Optimization (PSO) to improve the quality of transmitted MPEG-4 over IEEE 802.15.4. The proposed intelligent system should minimize data loss and distortion. The computer simulation results confirm that applying PSO in video transmission improve the quality of picture and reduce data loss when compared with the conventional MPEG video transmission in ZigBee

    不確実性下での設計に対するMulti-Fidelity不確定性定量化とSurrogate-Based Memeticアルゴリズム

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 土屋 武司, 東京大学教授 鈴木 真二, 東京大学教授 李家 賢一, 東京大学准教授 大山 聖, 東北大学准教授 下山 幸治University of Tokyo(東京大学

    Discrete and Continuous Optimization Based on Hierarchical Artificial Bee Colony Optimizer

    Get PDF
    This paper presents a novel optimization algorithm, namely, hierarchical artificial bee colony optimization (HABC), to tackle complex high-dimensional problems. In the proposed multilevel model, the higher-level species can be aggregated by the subpopulations from lower level. In the bottom level, each subpopulation employing the canonical ABC method searches the part-dimensional optimum in parallel, which can be constructed into a complete solution for the upper level. At the same time, the comprehensive learning method with crossover and mutation operator is applied to enhance the global search ability between species. Experiments are conducted on a set of 20 continuous and discrete benchmark problems. The experimental results demonstrate remarkable performance of the HABC algorithm when compared with other six evolutionary algorithms

    Evolutionary Computation 2020

    Get PDF
    Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms

    A Random Forest Assisted Evolutionary Algorithm for Data-Driven Constrained Multi-Objective Combinatorial Optimization of Trauma Systems for publication

    Get PDF
    Many real-world optimization problems can be solved by using the data-driven approach only, simply because no analytic objective functions are available for evaluating candidate solutions. In this work, we address a class of expensive datadriven constrained multi-objective combinatorial optimization problems, where the objectives and constraints can be calculated only on the basis of large amount of data. To solve this class of problems, we propose to use random forests and radial basis function networks as surrogates to approximate both objective and constraint functions. In addition, logistic regression models are introduced to rectify the surrogate-assisted fitness evaluations and a stochastic ranking selection is adopted to further reduce the influences of the approximated constraint functions. Three variants of the proposed algorithm are empirically evaluated on multi-objective knapsack benchmark problems and two realworld trauma system design problems. Experimental results demonstrate that the variant using random forest models as the surrogates are effective and efficient in solving data-driven constrained multi-objective combinatorial optimization problems

    A research survey: review of flexible job shop scheduling techniques

    Get PDF
    In the last 25 years, extensive research has been carried out addressing the flexible job shop scheduling (JSS) problem. A variety of techniques ranging from exact methods to hybrid techniques have been used in this research. The paper aims at presenting the development of flexible JSS and a consolidated survey of various techniques that have been employed since 1990 for problem resolution. The paper comprises evaluation of publications and research methods used in various research papers. Finally, conclusions are drawn based on performed survey results. A total of 404 distinct publications were found addressing the FJSSP. Some of the research papers presented more than one technique/algorithm to solve the problem that is categorized into 410 different applications. Selected time period of these research papers is between 1990 and February 2014. Articles were searched mainly on major databases such as SpringerLink, Science Direct, IEEE Xplore, Scopus, EBSCO, etc. and other web sources. All databases were searched for “flexible job shop” and “scheduling” in the title an
    corecore