900 research outputs found

    Evaluation of the humanitarian logistics model for disaster relief operations

    Get PDF

    Robust Platelet Logistics Planning in Disaster Relief Operations Under Uncertainty: a Coordinated Approach

    Full text link
    © 2017, Springer Science+Business Media, LLC. Resource sharing, as a coordination mechanism, can mitigate disruptions in supply and changes in demand. It is particularly crucial for platelets because they have a short lifespan and need to be transferred and allocated within a limited time to prevent waste or shortages. Thus, a coordinated model comprised of a mixed vertical-horizontal structure, for the logistics of platelets, is proposed for disaster relief operations in the response phase. The aim of this research is to reduce the wastage and shortage of platelets due to their critical role in wound healing. We present a bi-objective location-allocation robust possibilistic programming model for designing a two-layer coordinated organization strategy for multi-type blood-derived platelets under demand uncertainty. Computational results, derived using a heuristic ε-constraint algorithm, are reported and discussed to show the applicability of the proposed model. The experimental results indicate that surpluses and shortages in platelets remarkably declined following instigation of a coordinated disaster relief operation

    A mathematical pre-disaster model with uncertainty and multiple criteria for facility location and network fortification

    Get PDF
    Disasters have catastrophic effects on the affected population, especially in developing and underdeveloped countries. Humanitarian Logistics models can help decision-makers to efficiently and effectively warehouse and distribute emergency goods to the affected population, to reduce casualties and suffering. However, poor planning and structural damage to the transportation infrastructure could hamper these efforts and, eventually, make it impossible to reach all the affected demand centers. In this paper, a pre-disaster Humanitarian Logistics model is presented that jointly optimizes the prepositioning of aid distribution centers and the strengthening of road sections to ensure that as much affected population as possible can efficiently get help. The model is stochastic in nature and considers that the demand in the centers affected by the disaster and the state of the transportation network are random. Uncertainty is represented through scenarios representing possible disasters. The methodology is applied to a real-world case study based on the 2018 storm system that hit the Nampula Province in Mozambique

    A review of lean and agile management in humanitarian supply chains: analysing the pre-disaster and post-disaster phases and future directions

    Get PDF
    Disasters have quadrupled over the last two decades leading to unprecedented loss of life. The objective of disaster-focussed humanitarian supply chains (HSCs) is to ensure saving maximum lives with limited resources; despite severe uncertainties. Therefore, significant research has investigated lean and agile in HSCs; to effectively source and speedily deploy resources, with minimum wastage; in each disaster life-cycle phase. However, the literature and research findings are currently highly disjointed regarding how lean and agile principles may be aligned with different HSC activities in the disaster management lifecycle; and do not provide a collective understanding for practitioners and researchers. This paper reviews and organises the literature on HSCs in relation to lean and agile paradigms, focussing on the pre-disaster (mitigation and preparedness) and post-disaster (response and recovery) phases. Findings reveal, all phases benefit from both lean and agile, with agile benefitting the response phase most. The phases are inter-dependent and identifying optimum decoupling points for lean and agile principles are crucial. Majority research has focussed on individual or a couple of phases. Therefore, authors recommend research on integrating the functions of the different phases by employing lean and agile principles, to generate rapid response, economies of scale and cost minimisation

    Disaster Management Cycle-Based Integrated Humanitarian Supply Network Management

    Get PDF
    While logistics research recently has placed increased focus on disruptionmanagement, few studies have examined the response and recovery phases in post-disaster operations. We present a multiple-objective, integrated network optimizationmodel for making strategic decisions in the supply distribution and network restorationphases of humanitarian logistics operations. Our model provides an equity- or fairness-based solution for constrained capacity, budget, and resource problems in post-disasterlogistics management. We then generate efficient Pareto frontiers to understand the trade-off between the objectives of interest.Next, we present a goal programming-based multiple-objective integratedresponse and recovery model. The model prescribes fairness-based compromise solutionsfor user-desired goals, given limited capacity, budget, and available resources. Anexperimental study demonstrates how different decision making strategies can beformulated to understand important dimensions of decision making.Considering multiple, conflicting objectives of the model, generating Pareto-optimal front with ample, diverse solutions quickly is important for a decision maker tomake a final decision. Thus, we adapt the well-known Non-dominated Sorting GeneticAlgorithm II (NSGA-II) by integrating an evolutionary heuristic with optimization-basedtechniques called the Hybrid NSGA-II for this NP-hard problem. A Hypervolume-basedtechnique is used to assess the algorithm’s effectiveness. The Hazards U.S. Multi-Hazard(Hazus)-generated regional case studies based on earthquake scenarios are used todemonstrate the applicability of our proposed models in post-disaster operations

    Mathematical Models in Humanitarian Supply Chain Management: A Systematic Literature Review

    Get PDF
    In the past decade the humanitarian supply chain (HSC) has attracted the attention of researchers due to the increasing frequency of disasters. The uncertainty in time, location, and severity of disaster during predisaster phase and poor conditions of available infrastructure during postdisaster phase make HSC operations difficult to handle. In order to overcome the difficulties during these phases, we need to assure that HSC operations are designed in an efficient manner to minimize human and economic losses. In the recent times, several mathematical optimization techniques and algorithms have been developed to increase the efficiency of HSC operations. These techniques and algorithms developed for the field of HSC motivate the need of a systematic literature review. Owing to the importance of mathematical modelling techniques, this paper presents the review of the mathematical contributions made in the last decade in the field of HSC. A systematic literature review methodology is used for this paper due to its transparent procedure. There are two objectives of this study: the first one is to conduct an up-to-date survey of mathematical models developed in HSC area and the second one is to highlight the potential research areas which require attention of the researchers

    ОПТИМАЛЬНАЯ МАРШРУТИЗАЦИЯ ВОЗДУШНЫХ СУДОВ И МАШИН СКОРОЙ ПОМОЩИ В ЛОГИСТИКЕ ПРИ СТИХИЙНЫХ БЕДСТВИЯХ

    Get PDF
    One of the most vital aspects of emergency management studies is the development and examination of post-disaster search and rescue activities and treatment facilities. One of such issues to be considered while performing these operations is to reach the disaster victims within minimum time and to plan disaster logistics in the most efficient manner possible. In this study, the problem of planning debris scanning activities with Unmanned Aerial Vehicles after an earthquake and transporting the injured people to the hospitals by ambulances within minimum time was discussed, and mathematical models were developed to solve the problem. The ambulance routing problem and the mathematical model to be used in the solution to the problem are discussed for the first time in the literature. The developed model was tested on the problem sets created by taking into account the data of the province under investigation.Одним из наиболее важных аспектов исследований по управлению рисками и чрезвычайными ситуациями является разработка и изучение поисково-спасательных мероприятий и очистных сооружений после стихийных бедствий. Одним из вопросов, которые необходимо учитывать при выполнении этих операций, является обеспечение доступа к жертвам стихийных бедствий в минимальные сроки и планирование логистики в случае стихийных бедствий наиболее эффективным способом. В данном исследовании рассматривается проблема планирования работ по спасению с помощью беспилотных летательных аппаратов после землетрясения и транспортировки пострадавших людей в больницы на машинах скорой помощи за минимальное время. Для решения этой проблемы были разработаны и предложены математические модели. Впервые рассматривается задача маршрутизации скорой помощи и математическая модель, которая будет использоваться для решения этой задачи. Разработанная модель была протестирована на множествах задач, созданных с учетом реальных данных исследуемой провинции Турции

    Assessing Requirements for Decision Support Systems in Humanitarian Operations

    Get PDF
    Efficient and effective decision making in the chaotic environment of humanitarian relief distribution (HRD) is a challenging task. Decision makers, in such situations, are required to concentrate on numerous attributes classified by three decision factors: objectives, variables, and constraints. Recent HRD literature mainly focuses on optimizing procedures while neglecting the quantification of influential requirements (factors) for information systems to provide decision-making support. This article addresses this gap by accumulating those affecting attributes from the literature. It investigates their practical implications in HRD by measuring the preferences of a Delphi panel of 23 experts. The results quantify the importance of each attribute – along with the newly added ones by the experts – in the proposed process model for HRD in a large-scale sudden onset. Our work provides future researchers not only with a comprehensive set of practically feasible decision-making factors in HRD but also with an understanding of their influences or correlations

    Online Coordination Mechanism for Road Infrastructure Restoration using Unmanned Aerial Vehicles

    Get PDF
    The goal of this thesis is to study two barriers of efficient road network restoration, namely, the lack of debris information and the lack of coordination among the restoration operations. We develop an integrative online optimization model with a model-based data diffusion component to coordinate three restoration-interdependent operations in the disaster response phases such as damage assessment, road recovery, and relief distribution. The model developed for the damage assessment operation controls the debris data diffusion speed in the integrative framework. This data is periodically shared with an online model developed to prioritize the recovery process for blocked roads. Road prioritization is done in a way to make the highest acceleration in the relief distribution operation. The integrative framework is tested on the road network of Miami-Dade and its performance is compared with an online heuristic benchmark mimicking the performance of the Federal Emergency Management Agency
    corecore