14,301 research outputs found

    Network-based ranking in social systems: three challenges

    Get PDF
    Ranking algorithms are pervasive in our increasingly digitized societies, with important real-world applications including recommender systems, search engines, and influencer marketing practices. From a network science perspective, network-based ranking algorithms solve fundamental problems related to the identification of vital nodes for the stability and dynamics of a complex system. Despite the ubiquitous and successful applications of these algorithms, we argue that our understanding of their performance and their applications to real-world problems face three fundamental challenges: (i) Rankings might be biased by various factors; (2) their effectiveness might be limited to specific problems; and (3) agents' decisions driven by rankings might result in potentially vicious feedback mechanisms and unhealthy systemic consequences. Methods rooted in network science and agent-based modeling can help us to understand and overcome these challenges.Comment: Perspective article. 9 pages, 3 figure

    Follow Whom? Chinese Users Have Different Choice

    Full text link
    Sina Weibo, which was launched in 2009, is the most popular Chinese micro-blogging service. It has been reported that Sina Weibo has more than 400 million registered users by the end of the third quarter in 2012. Sina Weibo and Twitter have a lot in common, however, in terms of the following preference, Sina Weibo users, most of whom are Chinese, behave differently compared with those of Twitter. This work is based on a data set of Sina Weibo which contains 80.8 million users' profiles and 7.2 billion relations and a large data set of Twitter. Firstly some basic features of Sina Weibo and Twitter are analyzed such as degree and activeness distribution, correlation between degree and activeness, and the degree of separation. Then the following preference is investigated by studying the assortative mixing, friend similarities, following distribution, edge balance ratio, and ranking correlation, where edge balance ratio is newly proposed to measure balance property of graphs. It is found that Sina Weibo has a lower reciprocity rate, more positive balanced relations and is more disassortative. Coinciding with Asian traditional culture, the following preference of Sina Weibo users is more concentrated and hierarchical: they are more likely to follow people at higher or the same social levels and less likely to follow people lower than themselves. In contrast, the same kind of following preference is weaker in Twitter. Twitter users are open as they follow people from levels, which accords with its global characteristic and the prevalence of western civilization. The message forwarding behavior is studied by displaying the propagation levels, delays, and critical users. The following preference derives from not only the usage habits but also underlying reasons such as personalities and social moralities that is worthy of future research.Comment: 9 pages, 13 figure

    MuxViz: A Tool for Multilayer Analysis and Visualization of Networks

    Full text link
    Multilayer relationships among entities and information about entities must be accompanied by the means to analyze, visualize, and obtain insights from such data. We present open-source software (muxViz) that contains a collection of algorithms for the analysis of multilayer networks, which are an important way to represent a large variety of complex systems throughout science and engineering. We demonstrate the ability of muxViz to analyze and interactively visualize multilayer data using empirical genetic, neuronal, and transportation networks. Our software is available at https://github.com/manlius/muxViz.Comment: 18 pages, 10 figures (text of the accepted manuscript

    Collective Influence of Multiple Spreaders Evaluated by Tracing Real Information Flow in Large-Scale Social Networks

    Full text link
    Identifying the most influential spreaders that maximize information flow is a central question in network theory. Recently, a scalable method called "Collective Influence (CI)" has been put forward through collective influence maximization. In contrast to heuristic methods evaluating nodes' significance separately, CI method inspects the collective influence of multiple spreaders. Despite that CI applies to the influence maximization problem in percolation model, it is still important to examine its efficacy in realistic information spreading. Here, we examine real-world information flow in various social and scientific platforms including American Physical Society, Facebook, Twitter and LiveJournal. Since empirical data cannot be directly mapped to ideal multi-source spreading, we leverage the behavioral patterns of users extracted from data to construct "virtual" information spreading processes. Our results demonstrate that the set of spreaders selected by CI can induce larger scale of information propagation. Moreover, local measures as the number of connections or citations are not necessarily the deterministic factors of nodes' importance in realistic information spreading. This result has significance for rankings scientists in scientific networks like the APS, where the commonly used number of citations can be a poor indicator of the collective influence of authors in the community.Comment: 11 pages, 4 figure

    The H-index of a network node and its relation to degree and coreness

    Get PDF
    Identifying influential nodes in dynamical processes is crucial in understanding network structure and function. Degree, H-index and coreness are widely used metrics, but previously treated as unrelated. Here we show their relation by constructing an operator , in terms of which degree, H-index and coreness are the initial, intermediate and steady states of the sequences, respectively. We obtain a family of H-indices that can be used to measure a node’s importance. We also prove that the convergence to coreness can be guaranteed even under an asynchronous updating process, allowing a decentralized local method of calculating a node’s coreness in large-scale evolving networks. Numerical analyses of the susceptible-infected-removed spreading dynamics on disparate real networks suggest that the H-index is a good tradeoff that in many cases can better quantify node influence than either degree or coreness.This work was partially supported by the National Natural Science Foundation of China (Grant Nos. 11205042, 11222543, 11075031, 61433014). L.L. acknowledges the research start-up fund of Hangzhou Normal University under Grant No. PE13002004039 and the EU FP7 Grant 611272 (project GROWTHCOM). The Boston University work was supported by NSF Grants CMMI 1125290, CHE 1213217 and PHY 1505000. (11205042 - National Natural Science Foundation of China; 11222543 - National Natural Science Foundation of China; 11075031 - National Natural Science Foundation of China; 61433014 - National Natural Science Foundation of China; PE13002004039 - research start-up fund of Hangzhou Normal University; 611272 - EU FP7 Grant (project GROWTHCOM); CMMI 1125290 - NSF; CHE 1213217 - NSF; PHY 1505000 - NSF)Published versio
    • …
    corecore