3,250 research outputs found

    Task-based Adaptation of Graphical Content in Smart Visual Interfaces

    Get PDF
    To be effective visual representations must be adapted to their respective context of use, especially in so-called Smart Visual Interfaces striving to present specifically those information required for the task at hand. This thesis proposes a generic approach that facilitate the automatic generation of task-specific visual representations from suitable task descriptions. It is discussed how the approach is applied to four principal content types raster images, 2D vector and 3D graphics as well as data visualizations, and how existing display techniques can be integrated into the approach.Effektive visuelle Repräsentationen müssen an den jeweiligen Nutzungskontext angepasst sein, insbesondere in sog. Smart Visual Interfaces, welche anstreben, möglichst genau für die aktuelle Aufgabe benötigte Informationen anzubieten. Diese Arbeit entwirft einen generischen Ansatz zur automatischen Erzeugung aufgabenspezifischer Darstellungen anhand geeigneter Aufgabenbeschreibungen. Es wird gezeigt, wie dieser Ansatz auf vier grundlegende Inhaltstypen Rasterbilder, 2D-Vektor- und 3D-Grafik sowie Datenvisualisierungen anwendbar ist, und wie existierende Darstellungstechniken integrierbar sind

    Video browsing interfaces and applications: a review

    Get PDF
    We present a comprehensive review of the state of the art in video browsing and retrieval systems, with special emphasis on interfaces and applications. There has been a significant increase in activity (e.g., storage, retrieval, and sharing) employing video data in the past decade, both for personal and professional use. The ever-growing amount of video content available for human consumption and the inherent characteristics of video data—which, if presented in its raw format, is rather unwieldy and costly—have become driving forces for the development of more effective solutions to present video contents and allow rich user interaction. As a result, there are many contemporary research efforts toward developing better video browsing solutions, which we summarize. We review more than 40 different video browsing and retrieval interfaces and classify them into three groups: applications that use video-player-like interaction, video retrieval applications, and browsing solutions based on video surrogates. For each category, we present a summary of existing work, highlight the technical aspects of each solution, and compare them against each other

    CHORUS Deliverable 2.2: Second report - identification of multi-disciplinary key issues for gap analysis toward EU multimedia search engines roadmap

    Get PDF
    After addressing the state-of-the-art during the first year of Chorus and establishing the existing landscape in multimedia search engines, we have identified and analyzed gaps within European research effort during our second year. In this period we focused on three directions, notably technological issues, user-centred issues and use-cases and socio- economic and legal aspects. These were assessed by two central studies: firstly, a concerted vision of functional breakdown of generic multimedia search engine, and secondly, a representative use-cases descriptions with the related discussion on requirement for technological challenges. Both studies have been carried out in cooperation and consultation with the community at large through EC concertation meetings (multimedia search engines cluster), several meetings with our Think-Tank, presentations in international conferences, and surveys addressed to EU projects coordinators as well as National initiatives coordinators. Based on the obtained feedback we identified two types of gaps, namely core technological gaps that involve research challenges, and “enablers”, which are not necessarily technical research challenges, but have impact on innovation progress. New socio-economic trends are presented as well as emerging legal challenges

    Mo.Se.: Segmentación de mosaico de imágenes basado en aprendizaje profundo en cascada

    Get PDF
    [EN] Mosaic is an ancient type of art used to create decorative images or patterns combining small components. A digital version of a mosaic can be useful for archaeologists, scholars and restorers who are interested in studying, comparing and preserving mosaics. Nowadays, archaeologists base their studies mainly on manual operation and visual observation that, although still fundamental, should be supported by an automatized procedure of information extraction. In this context, this research explains improvements which can change the manual and time-consuming procedure of mosaic tesserae drawing. More specifically, this paper analyses the advantages of using Mo.Se. (Mosaic Segmentation), an algorithm that exploits deep learning and image segmentation techniques; the methodology combines U-Net 3 Network with the Watershed algorithm. The final purpose is to define a workflow which establishes the steps to perform a robust segmentation and obtain a digital (vector) representation of a mosaic. The detailed approach is presented, and theoretical justifications are provided, building various connections with other models, thus making the workflow both theoretically valuable and practically scalable for medium or large datasets. The automatic segmentation process was tested with the high-resolution orthoimage of an ancient mosaic by following a close-range photogrammetry procedure. Our approach has been tested in the pavement of St. Stephen's Church in Umm ar-Rasas, a Jordan archaeological site, located 30 km southeast of the city of Madaba (Jordan). Experimental results show that this generalized framework yields good performances, obtaining higher accuracy compared with other state-of-the-art approaches. Mo.Se. has been validated using publicly available datasets as a benchmark, demonstrating that the combination of learning-based methods with procedural ones enhances segmentation performance in terms of overall accuracy, which is almost 10% higher. This study’s ambitious aim is to provide archaeologists with a tool which accelerates their work of automatically extracting ancient geometric mosaics.Highlights:A Mo.Se. (Mosaic Segmentation) algorithm is described with the purpose to perform robust image segmentation to automatically detect tesserae in ancient mosaics.This research aims to overcome manual and time-consuming procedure of tesserae segmentation by proposing an approach that uses deep learning and image processing techniques, obtaining a digital replica of a mosaic.Extensive experiments show that the proposed framework outperforms state-of-the-art methods with higher accuracy, even compared with publicly available datasets.[ES] El mosaico es un tipo de arte antiguo utilizado para crear imágenes decorativas o patrones de pequeños componentes. Una versión digital de un mosaico puede ser útil a los arqueólogos, estudiosos y restauradores que están interesados en el estudio, la comparación y la preservación de los mosaicos. Hoy en día, los arqueólogos basan sus estudios principalmente en la operación manual y la observación visual que, aunque sigue siendo fundamental, debe ser apoyada con la ayuda de un procedimiento automatizado de extracción de la información. En este contexto, esta investigación tiene la intención de superar el procedimiento manual y lento del dibujo de teselas en mosaico proponiendo Mo.Se. (Mosaic Segmentation), un algoritmo que explota técnicas de aprendizaje profundo y segmentación de imagen; específicamente, la metodología combina la red U-Net 3 con el algoritmo Watershed. El propósito final es definir un flujo de trabajo que establezca los pasos para realizar una segmentación robusta y obtener una representación digital (vectorial) de un mosaico. Se presenta el procedimiento detallado y se proporcionan justificaciones teóricas, construyendo varias conexiones con otros modelos, haciendo que el flujo de trabajo sea teóricamente valioso y prácticamente escalable en conjuntos de datos medianos o grandes. El proceso de segmentación automática se probó con la ortoimagen de alta resolución de un mosaico antiguo, siguiendo un procedimiento de fotogrametría de objeto cercano. Nuestro enfoque se ha probado en el pavimento de la Iglesia de San Esteban en Umm ar-Rasas, un sitio arqueológico de Jordania, ubicado a 30 km al sureste de la ciudad de Madaba (Jordania). Los resultados experimentales muestran que este marco generalizado produce buenos rendimientos, obteniendo una mayor precisión en comparación con otros enfoques de vanguardia. Mo.Se. se ha validado utilizando conjuntos de datos disponibles públicamente como punto de referencia, lo que demuestra que la combinación de métodos basadosen el aprendizaje con métodos procedimentales mejora el rendimiento de la segmentación en casi un 10% en términos de exactitud en general. El ambicioso objetivo de este estudio es proporcionar a los arqueólogos una herramienta que acelere su trabajo de extracción automática de mosaicos geométricos antiguos.This work was partially found within the framework of the project Innovative technologies and training activities for the conservation and enhancement of the archaeological site of Umm er-Rasas (Jordan) funded by Ministero degli Affari Esteri e della Cooperazione Internazionale. The authors would like to express their gratitude to the ISPC CNR and in particular to Dott. Roberto Gabrielli (project leader) and Alessandra Albiero for providing the dataset.Felicetti, A.; Paolanti, M.; Zingaretti, P.; Pierdicca, R.; Malinverni, ES. (2021). Mo.Se.: Mosaic image segmentation based on deep cascading learning. Virtual Archaeology Review. 12(24):25-38. https://doi.org/10.4995/var.2021.14179OJS25381224Bartoli, A., Fenu, G., Medvet, E., Pellegrino, F. A., & Timeus, N. (2016, November). Segmentation of Mosaic Images Based on Deformable Models Using Genetic Algorithms. In International Conference on Smart Objects and Technologies for Social Good (pp. 233-242). Springer, Cham. https://doi.org/10.1007/978-3-319-61949-1_25Battiato, S., Di Blasi, G., Farinella, G. M., & Gallo, G. (2007, December). Digital mosaic frameworks‐an overview. In computer graphics forum (Vol. 26, No. 4, pp. 794-812). Oxford, UK: Blackwell Publishing Ltd. https://doi.org/10.1111/j.1467-8659.2007.01021.xBeucher, S., & Lantuéjoul, C. (1979). Use of watersheds in contour detection. International workshop on image processing: Real-time edge and motion detection/estimation. Rennes, France.Benyoussef, L., & Derrode, S. (2011). Analysis of ancient mosaic images for dedicated applications. Digital Imaging for Cultural Heritage Preservation: Analysis, Restoration, and Reconstruction of Ancient Artworks, 385.Bonfigli, R., Felicetti, A., Principi, E., Fagiani, M., Squartini, S., & Piazza, F. (2018). Denoising autoencoders for non-intrusive load monitoring: improvements and comparative evaluation. Energy and Buildings, 158. https://doi.org/10.1016/j.enbuild.2017.11.054Bordoni, L., & Mele, F. (Eds.). (2016). Artificial intelligence for cultural heritage. Cambridge Scholars Publishing.Bourke, P. (2014, December). Novel imaging of heritage objects and sites. In 2014 International Conference on Virtual Systems & Multimedia (VSMM) (pp. 25-30). IEEE. 10.1109/VSMM.2014.7136666Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T., & Ronneberger, O. (2016, October). 3D U-Net: learning dense volumetric segmentation from sparse annotation. In International conference on medical image computing and computer-assisted intervention (pp. 424-432). Springer, Cham. https://doi.org/10.1007/978-3-319-46723-8_49Cipriani, L., & Fantini, F. (2017). Digitalization culture VS archaeological visualization: integration of pipelines and open issues. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 195. https://doi.org/10.5194/isprs-archives-XLII-2-W3-195-2017Djibril, M. O., & Thami, R. O. H. (2008). Islamic geometrical patterns indexing and classification using discrete symmetry groups. Journal on Computing and Cultural Heritage (JOCCH), 1(2), 1-14. https://doi.org/10.1145/1434763.1434767Djibril, M. O., Thami, R. O. H., Benslimane, R., & Daoudi, M. (2005). Une nouvelle technique pour l'indexation des arabesques basée sur la dimension fractale. Univ. Mohamed V, Maroc.Falk, T., Mai, D., Bensch, R., Çiçek, Ö., Abdulkadir, A., Marrakchi, Y., Böhm, A., Deubner, J., Jäckel, Z., Seiwald, K., & Dovzhenko, A. (2019). U-Net: deep learning for cell counting, detection, and morphometry. Nature methods, 16(1), 67-70. https://doi.org/10.1038/s41592-018-0261-2Felicetti, A., Albiero, A., Gabrielli, R., Pierdicca, R., Paolanti, M., Zingaretti, P., & Malinverni, E. S. (2018). Automatic Mosaic Digitalization: a Deep Learning approach to tessera segmentation. In METROARCHEO, IEEE International Conference on Metrology for Archaeology and Cultural Heritage. Cassino. https://doi.org/10.1109/MetroArchaeo43810.2018.13606Fenu, G., Jain, N., Medvet, E., Pellegrino, F. A., & Namer, M. P. (2015, March). On the Assessment of Segmentation Methods for Images of Mosaics. In VISAPP (3) (pp. 130-137). https://doi.org/10.13140/RG.2.1.3025.6489Fenu, G., Medvet, E., Panfilo, D., & Pellegrino, F. A. (2020). Mosaic Images Segmentation using U-net. In International Conference on Pattern Recognition Applications and Methods (pp. 485-492). Scitepress. http://dx.doi.org/10.5220/0008967404850492Fontanella, F., Molinara, M., Gallozzi, A., Cigola, M., Senatore, L. J., Florio, R., Clini, P., & Celis, F. (2019, June). HeritageGO (HeGO) A Social Media Based Project for Cultural Heritage Valorization. In Adjunct Publication of the 27th Conference on User Modeling, Adaptation and Personalization (pp. 377-382). https://doi.org/10.1145/3314183.3323863Gil, F. A., Gomis, J. M., & Pérez, M. (2009). Reconstruction Techniques for Image Analysis of Ancient Islamic Mosaics. International Journal of Virtual Reality, 8(3), 5-12. https://doi.org/10.20870/IJVR.2009.8.3.2735Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.Kohl, S., Romera-Paredes, B., Meyer, C., De Fauw, J., Ledsam, J. R., Maier-Hein, K., Eslami, S.M.A, Rezende, D.J., & Ronneberger, O. (2018). A probabilistic u-net for segmentation of ambiguous images. In Advances in Neural Information Processing Systems (pp. 6965-6975). https://arxiv.org/abs/1806.05034Liciotti, D., Paolanti, M., Pietrini, R., Frontoni, E., & Zingaretti, P. (2018, August). Convolutional networks for semantic heads segmentation using top-view depth data in crowded environment. In 2018 24th international conference on pattern recognition (ICPR) IEEE. https://doi.org/10.1109/ICPR.2018.8545397Maghrebi, W., Ammar, A. B., Alimi, A. M., & Khabou, M. A. (2013). An Intelligent mutli-object retrieval system for historical mosaics. Editorial Preface, 4(4). https://doi.org/10.14569/IJACSA.2013.040417Maghrebi, W., Baccour, L., Khabou, M. A., & Alimi, A. M. (2007, November). An indexing and retrieval system of historic art images based on fuzzy shape similarity. In Mexican International Conference on Artificial Intelligence (pp. 623-633). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76631-5_59Maghrebi, W., Borchani, A., Khabou, M. A., & Alimi, A. M. (2007, September). A system for historic document image indexing and retrieval based on xml database conforming to mpeg7 standard. In International Workshop on Graphics Recognition (pp. 114-125). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88188-9_12Malinverni, E. S., Pierdicca, R., Di Stefano, F., Gabrielli, R., & Albiero, A. (2019). Virtual museum enriched by GIS data to share science and culture. Church of Saint Stephen in Umm Ar-Rasas (Jordan). Virtual Archaeology Review, 10(21). https://doi.org/10.4995/var.2019.11919M'hedhbi, M., Mezhoud, R., M'hiri, S., & Ghorbel, F. (2006, April). A new content-based image indexing and retrieval system of mosaic images. In 2006 2nd International Conference on Information & Communication Technologies (Vol. 1, pp. 1715-1719). IEEE. https://doi.org/10.1109/ICTTA.2006.1684644Pierdicca, R., Frontoni, E., Malinverni, E. S., Colosi, F., & Orazi, R. (2016). Virtual reconstruction of archaeological heritage using a combination of photogrammetric techniques: Huaca Arco Iris, Chan Chan, Peru. Digital Applications in Archaeology and Cultural Heritage, 3(3). https://doi.org/10.1016/j.daach.2016.06.002Pierdicca, R., Frontoni, E., Zingaretti, P., Malinverni, E. S., Colosi, F., & Orazi, R. (2015, August). Making visible the invisible. Augmented reality visualization for 3D reconstructions of archaeological sites. In International Conference on Augmented and Virtual Reality (Blinded for peer review). Springer, Cham. https://doi.org/10.1007/978-3-319-22888-4_3Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention (pp. 234-241). Springer, Cham. https://doi.org/10.1007/978-3-319-24574-4_28Vincent, L., & Soille, P. (1991). Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis & Machine Intelligence, (6), 583-598. https://doi.org/10.1109/34.87344Youssef, L. B., & Derrode, S. (2008). Tessella-oriented segmentation and guidelines estimation of ancient mosaic images. Journal of Electronic Imaging, 17(4), 043014. https://doi.org/10.1117/1.3013543Zarghili, A., Gadi, N., Benslimane, R., & Bouatouch, K. (2001). Arabo-Moresque decor image retrieval system based on mosaic representations. Journal of Cultural Heritage, 2(2), 149-154. https://doi.org/10.1016/S1296-2074(01)01116-5Zarghili, A., Kharroubi, J., & Benslimane, R. (2008). Arabo-Moresque decor images retrieval system based on spatial relationships indexing. Journal of cultural heritage, 9(3), 317-325. https://doi.org/10.1016/j.culher.2007.10.008Zitová, B., Flusser, J., & Šroubek, F. (2004). An application of image processing in the medieval mosaic conservation. Pattern analysis and applications, 7(1), 18-25. https://doi.org/10.1007/s10044-003-0200-
    corecore