3,727 research outputs found

    Notes on the existence of solutions in the pairwise comparisons method using the Heuristic Rating Estimation approach

    Full text link
    Pairwise comparisons are a well-known method for modelling of the subjective preferences of a decision maker. A popular implementation of the method is based on solving an eigenvalue problem for M - the matrix of pairwise comparisons. This does not take into account the actual values of preference. The Heuristic Rating Estimation (HRE) approach is a modification of this method in which allows modelling of the reference values. To determine the relative order of preferences is to solve a certain linear equation system defined by the matrix A and the constant term vector b (both derived from M). The article explores the properties of these equation systems. In particular, it is proven that for some small data inconsistency the A matrix is an M-matrix, hence the equation proposed by the HRE approach has a unique strictly positive solution.Comment: 8 page

    Clustering and Inference From Pairwise Comparisons

    Full text link
    Given a set of pairwise comparisons, the classical ranking problem computes a single ranking that best represents the preferences of all users. In this paper, we study the problem of inferring individual preferences, arising in the context of making personalized recommendations. In particular, we assume that there are nn users of rr types; users of the same type provide similar pairwise comparisons for mm items according to the Bradley-Terry model. We propose an efficient algorithm that accurately estimates the individual preferences for almost all users, if there are rmax{m,n}logmlog2nr \max \{m, n\}\log m \log^2 n pairwise comparisons per type, which is near optimal in sample complexity when rr only grows logarithmically with mm or nn. Our algorithm has three steps: first, for each user, compute the \emph{net-win} vector which is a projection of its (m2)\binom{m}{2}-dimensional vector of pairwise comparisons onto an mm-dimensional linear subspace; second, cluster the users based on the net-win vectors; third, estimate a single preference for each cluster separately. The net-win vectors are much less noisy than the high dimensional vectors of pairwise comparisons and clustering is more accurate after the projection as confirmed by numerical experiments. Moreover, we show that, when a cluster is only approximately correct, the maximum likelihood estimation for the Bradley-Terry model is still close to the true preference.Comment: Corrected typos in the abstrac

    On Axiomatization of Inconsistency Indicators for Pairwise Comparisons

    Full text link
    We examine the notion of inconsistency in pairwise comparisons and propose an axiomatization which is independent of any method of approximation or the inconsistency indicator definition (e.g., Analytic Hierarchy Process, AHP). It has been proven that the eigenvalue-based inconsistency (proposed as a part of AHP) is incorrect.Comment: Enhanced text, with 21 pages and 3 figures, proves that arbitrarily inaccurate pairwise matrices are considered acceptable by theories with a inconsistency based on the principal eigenvalue (e.g., AHP). CPC (corner pairwise comparisons) matrix is the crucial part of this study as it invalidates any eigenvalue-based inconsistency. All comments are highly appreciate
    corecore