106 research outputs found

    Psr1p interacts with SUN/sad1p and EB1/mal3p to establish the bipolar spindle

    Get PDF
    Regular Abstracts - Sunday Poster Presentations: no. 382During mitosis, interpolar microtubules from two spindle pole bodies (SPBs) interdigitate to create an antiparallel microtubule array for accommodating numerous regulatory proteins. Among these proteins, the kinesin-5 cut7p/Eg5 is the key player responsible for sliding apart antiparallel microtubules and thus helps in establishing the bipolar spindle. At the onset of mitosis, two SPBs are adjacent to one another with most microtubules running nearly parallel toward the nuclear envelope, creating an unfavorable microtubule configuration for the kinesin-5 kinesins. Therefore, how the cell organizes the antiparallel microtubule array in the first place at mitotic onset remains enigmatic. Here, we show that a novel protein psrp1p localizes to the SPB and plays a key role in organizing the antiparallel microtubule array. The absence of psr1+ leads to a transient monopolar spindle and massive chromosome loss. Further functional characterization demonstrates that psr1p is recruited to the SPB through interaction with the conserved SUN protein sad1p and that psr1p physically interacts with the conserved microtubule plus tip protein mal3p/EB1. These results suggest a model that psr1p serves as a linking protein between sad1p/SUN and mal3p/EB1 to allow microtubule plus ends to be coupled to the SPBs for organization of an antiparallel microtubule array. Thus, we conclude that psr1p is involved in organizing the antiparallel microtubule array in the first place at mitosis onset by interaction with SUN/sad1p and EB1/mal3p, thereby establishing the bipolar spindle.postprin

    Program Abstracts, 98th Session, Iowa Academy of Science, April 25-26, 1986, Wartburg College

    Get PDF

    The Largest Unethical Medical Experiment in Human History

    Get PDF
    This monograph describes the largest unethical medical experiment in human history: the implementation and operation of non-ionizing non-visible EMF radiation (hereafter called wireless radiation) infrastructure for communications, surveillance, weaponry, and other applications. It is unethical because it violates the key ethical medical experiment requirement for “informed consent” by the overwhelming majority of the participants. The monograph provides background on unethical medical research/experimentation, and frames the implementation of wireless radiation within that context. The monograph then identifies a wide spectrum of adverse effects of wireless radiation as reported in the premier biomedical literature for over seven decades. Even though many of these reported adverse effects are extremely severe, the true extent of their severity has been grossly underestimated. Most of the reported laboratory experiments that produced these effects are not reflective of the real-life environment in which wireless radiation operates. Many experiments do not include pulsing and modulation of the carrier signal, and most do not account for synergistic effects of other toxic stimuli acting in concert with the wireless radiation. These two additions greatly exacerbate the severity of the adverse effects from wireless radiation, and their neglect in current (and past) experimentation results in substantial under-estimation of the breadth and severity of adverse effects to be expected in a real-life situation. This lack of credible safety testing, combined with depriving the public of the opportunity to provide informed consent, contextualizes the wireless radiation infrastructure operation as an unethical medical experiment

    Collective Behaviour: From Cells to Humans

    Get PDF
    Living in organised groups is a strategy that can be observed in a multitude of diverse species. Among such species, the behaviour of an individual on their own is not the same as within a group: the environment is modified by the presence of more subjects, individuals interact with each other, and from those interactions complex patterns of behaviour can emerge. Some species of animals almost exclusively exist as groups, and as a consequence, studying them in a social context is the only way to understand their behaviour in nature. This is the idea that drives all the research presented in this thesis: the particular behaviour exhibited by the group is so robust that it will emerge even in a very simplified environment. By observing the individual and the group in those simplified experimental conditions, it is possible to deduce rules that might govern the interaction. The importance of interactions in the group’s behaviour can then be demonstrated by implementing a computer model of agents following those rules and comparing it with natural and experimental behaviour. This thesis presents different examples of such analyses, and gives illustrations of the range of questions that can be answered through this method. Groups of stem cells, juvenile sea bass and human beings were successively observed and tracked in suitable environments, with or without perturbation. The data extracted from those experiments were then processed so as to correct recording errors, and individual and collective behaviours were derived from those data, returning new insights on the nature of the interaction at the individual level, their consequences at the global level, as well as the effects of the interaction on both. Finally, I present the computer models derived from those analyses. Many systems in nature share this property of global behaviours emerging from deterministic local interaction, and as a consequence studies of this kind could shed light on important questions, of which cancer treatment, ocean acidification and human organisations are but a few examples
    • …
    corecore