4,055 research outputs found

    Balancing labor requirements in a manufacturing environment

    Get PDF
    “This research examines construction environments within manufacturing facilities, specifically semiconductor manufacturing facilities, and develops a new optimization method that is scalable for large construction projects with multiple execution modes and resource constraints. The model is developed to represent real-world conditions in which project activities do not have a fixed, prespecified duration but rather a total amount of work that is directly impacted by the level of resources assigned. To expand on the concept of resource driven project durations, this research aims to mimic manufacturing construction environments by allowing a non-continuous resource allocation to project tasks. This concept allows for resources to shift between projects in order to achieve the optimal result for the project manager. Our model generates a novel multi-objective resource constrained project scheduling problem. Specifically, two objectives are studied; the minimization of the total direct labor cost and the minimization of the resource leveling. This research will utilize multiple techniques to achieve resource leveling and discuss the advantage each one provides to the project team, as well as a comparison of the Pareto Fronts between the given resource leveling and cost minimization objective functions. Finally, a heuristic is developed utilizing partial linear relaxation to scale the optimization model for large scale projects. The computation results from multiple randomly generated case studies show that the new heuristic method is capable of generating high quality solutions at significantly less computational time”--Abstract, page iv

    A statistical method for estimating activity uncertainty parameters to improve project forecasting

    Get PDF
    Just like any physical system, projects have entropy that must be managed by spending energy. The entropy is the project’s tendency to move to a state of disorder (schedule delays, cost overruns), and the energy process is an inherent part of any project management methodology. In order to manage the inherent uncertainty of these projects, accurate estimates (for durations, costs, resources, …) are crucial to make informed decisions. Without these estimates, managers have to fall back to their own intuition and experience, which are undoubtedly crucial for making decisions, but are are often subject to biases and hard to quantify. This paper builds further on two published calibration methods that aim to extract data from real projects and calibrate them to better estimate the parameters for the probability distributions of activity durations. Both methods rely on the lognormal distribution model to estimate uncertainty in activity durations and perform a sequence of statistical hypothesis tests that take the possible presence of two human biases into account. Based on these two existing methods, a new so-called statistical partitioning heuristic is presented that integrates the best elements of the two methods to further improve the accuracy of estimating the distribution of activity duration uncertainty. A computational experiment has been carried out on an empirical database of 83 empirical projects. The experiment shows that the new statistical partitioning method performs at least as good as, and often better than, the two existing calibration methods. The improvement will allow a better quantification of the activity duration uncertainty, which will eventually lead to a better prediction of the project schedule and more realistic expectations about the project outcomes. Consequently, the project manager will be able to better cope with the inherent uncertainty (entropy) of projects with a minimum managerial effort (energy)
    • …
    corecore