146 research outputs found

    Multi-objective sequence dependent setup times permutation flowshop: A new algorithm and a comprehensive study

    Full text link
    The permutation flowshop scheduling problem has been thoroughly studied in recent decades, both from single objective as well as from multi-objective perspectives. To the best of our knowledge, little has been done regarding the multi-objective flowshop with Pareto approach when sequence dependent setup times are considered. As setup times and multi-criteria problems are important in industry, we must focus on this area. We propose a simple, yet powerful algorithm for the sequence dependent setup times flowshop problem with several criteria. The presented method is referred to as Restarted Iterated Pareto Greedy or RIPG and is compared against the best performing approaches from the relevant literature. Comprehensive computational and statistical analyses are carried out in order to demonstrate that the proposed RIPG method clearly outperforms all other algorithms and, as a consequence, it is a state-of- art method for this important and practical scheduling problemThe authors thank the anonymous referees for their careful and detailed comments which have helped improve this manuscript considerably. This work is partially financed by the Spanish Ministry of Science and Innovation, under the projects "SMPA-Advanced Parallel Multiobjective Sequencing: Practical and Theorerical Advances" with reference DPI2008-03511/DPI and "RESULT-Realistic Extended Scheduling Using Light Techniques" with reference DPI2012-36243-C02-01 and by the Small and Medium Industry of the Generalitat Valenciana (IMPIVA) and by the European Union through the European Regional Development Fund (FEDER) inside the R+D program "Ayudas dirigidas a Institutos Tecnologicos de la Red IMPIVA" during the year 2011, with project numbers IMDEEA/2011/142 and IMDEEA/2012/143.Ciavotta, M.; Minella, GG.; Ruiz García, R. (2013). Multi-objective sequence dependent setup times permutation flowshop: A new algorithm and a comprehensive study. European Journal of Operational Research. 227(2):301-313. https://doi.org/10.1016/j.ejor.2012.12.031S301313227

    A survey of scheduling problems with setup times or costs

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    A Multi-Restart Iterated Local Search Algorithm for the Permutation Flow Shop Problem Minimizing Total Flow Time

    Get PDF
    A variety of metaheuristics have been developed to solve the permutation flow shop problem minimizing total flow time. Iterated local search (ILS) is a simple but powerful metaheuristic used to solve this problem. Fundamentally, ILS is a procedure that needs to be restarted from another solution when it is trapped in a local optimum. A new solution is often generated by only slightly perturbing the best known solution, narrowing the search space and leading to a stagnant state. In this paper, a strategy is proposed to allow the restart solution to be generated from a group of solutions drawn from local optima. This allows an extension of the search space, while maintaining the quality of the restart solution. A multi-restart ILS (MRSILS) is proposed, with the performance evaluated on a set of benchmark instances and compared with six state of the art metaheuristics. The results show that the easily implementable MRSILS is significantly better than five of the other metaheuristics and comparable to or slightly better than the remaining one. © 2012 Elsevier Ltd. All rights reserved
    corecore