260 research outputs found

    Mathematics in the Supply Chain

    Get PDF
    [no abstract available

    Application of lean scheduling and production control in non-repetitive manufacturing systems using intelligent agent decision support

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.Lean Manufacturing (LM) is widely accepted as a world-class manufacturing paradigm, its currency and superiority are manifested in numerous recent success stories. Most lean tools including Just-in-Time (JIT) were designed for repetitive serial production systems. This resulted in a substantial stream of research which dismissed a priori the suitability of LM for non-repetitive non-serial job-shops. The extension of LM into non-repetitive production systems is opposed on the basis of the sheer complexity of applying JIT pull production control in non-repetitive systems fabricating a high variety of products. However, the application of LM in job-shops is not unexplored. Studies proposing the extension of leanness into non-repetitive production systems have promoted the modification of pull control mechanisms or reconfiguration of job-shops into cellular manufacturing systems. This thesis sought to address the shortcomings of the aforementioned approaches. The contribution of this thesis to knowledge in the field of production and operations management is threefold: Firstly, a Multi-Agent System (MAS) is designed to directly apply pull production control to a good approximation of a real-life job-shop. The scale and complexity of the developed MAS prove that the application of pull production control in non-repetitive manufacturing systems is challenging, perplex and laborious. Secondly, the thesis examines three pull production control mechanisms namely, Kanban, Base Stock and Constant Work-in-Process (CONWIP) which it enhances so as to prevent system deadlocks, an issue largely unaddressed in the relevant literature. Having successfully tested the transferability of pull production control to non-repetitive manufacturing, the third contribution of this thesis is that it uses experimental and empirical data to examine the impact of pull production control on job-shop performance. The thesis identifies issues resulting from the application of pull control in job-shops which have implications for industry practice and concludes by outlining further research that can be undertaken in this direction

    Anarchic manufacturing: implementing fully distributed control and planning in assembly

    Get PDF
    This paper demonstrates that a distributed control and planning system can fulfil an idealised mixed-model assembly problem and compete with traditional systems. The anarchic manufacturing system is a distributed planning and control system, based on a free market structure, where system elements have decision-making authority and autonomy. Mixed-model assembly is typically managed centrally for production planning and control, using simplification and hierarchical structures to manage complexity. In developing anarchy, inter-job cooperation is implemented to synergise jobs together and fulfil global objectives efficiently. The anarchic system maximises available flexibility, through embracing complexity, and reduces myopic decision making by maximising an agent’s lifetime profitability. Through agent-based simulation experiments, the anarchic system is compared to fixed and flexible centralised systems. The proposed system outperforms traditional systems when the scenario’s structural flexibility allows agile and delayed dynamic decision making. Additionally, the anarchic system managed dynamic bottleneck disruptions as effectively as flexible centralised systems

    A Review of Production Planning Models: Emerging features and limitations compared to practical implementation

    Get PDF
    In the last few decades, thanks to the interest of industry and academia, production planning (PP) models have shown significant growth. Several structured literature reviews highlighted the evolution of PP and guided the work of scholars providing in-depth reviews of optimization models. Building on these works, the contribution of this paper is an update and detailed analysis of PP optimization models. The present review allows to analyze the development of PP models by considering: i) problem type, ii) modeling approach, iii) development tools, iv) industry-specific solutions. Specifically, to this last point, a proposed industrial solution is compared to emerging features and limitations, which shows a practical evolution of such a system

    A review of discrete-time optimization models for tactical production planning

    Full text link
    This is an Accepted Manuscript of an article published in International Journal of Production Research on 27 Mar 2014, available online: http://doi.org/10.1080/00207543.2014.899721[EN] This study presents a review of optimization models for tactical production planning. The objective of this research is to identify streams and future research directions in this field based on the different classification criteria proposed. The major findings indicate that: (1) the most popular production-planning area is master production scheduling with a big-bucket time-type period; (2) most of the considered limited resources correspond to productive resources and, to a lesser extent, to inventory capacities; (3) the consideration of backlogs, set-up times, parallel machines, overtime capacities and network-type multisite configuration stand out in terms of extensions; (4) the most widely used modelling approach is linear/integer/mixed integer linear programming solved with exact algorithms, such as branch-and-bound, in commercial MIP solvers; (5) CPLEX, C and its variants and Lindo/Lingo are the most popular development tools among solvers, programming languages and modelling languages, respectively; (6) most works perform numerical experiments with random created instances, while a small number of works were validated by real-world data from industrial firms, of which the most popular are sawmills, wood and furniture, automobile and semiconductors and electronic devices.This study has been funded by the Universitat Politècnica de València projects: ‘Material Requirement Planning Fourth Generation (MRPIV)’ (Ref. PAID-05-12) and ‘Quantitative Models for the Design of Socially Responsible Supply Chains under Uncertainty Conditions. Application of Solution Strategies based on Hybrid Metaheuristics’ (PAID-06-12).Díaz-Madroñero Boluda, FM.; Mula, J.; Peidro Payá, D. (2014). A review of discrete-time optimization models for tactical production planning. International Journal of Production Research. 52(17):5171-5205. doi:10.1080/00207543.2014.899721S51715205521

    An on-demand fixture manufacturing cell for mass customisation production systems.

    Get PDF
    Master of Science in Engineering. University of KwaZulu-Natal, Durban, 2017.Increased demand for customised products has given rise to the research of mass customisation production systems. Customised products exhibit geometric differences that render the use of standard fixtures impractical. Fixtures must be configured or custom-manufactured according to the unique requirements of each product. Reconfigurable modular fixtures have emerged as a cost-effective solution to this problem. Customised fixtures must be made available to a mass customisation production system as rapidly as parts are manufactured. Scheduling the creation/modification of these fixtures must now be treated together with the production scheduling of parts on machines. Scheduling and optimisation of such a problem in this context was found to be a unique avenue of research. An on-demand Fixture Manufacturing Cell (FxMC) that resides within a mass customisation production system was developed. This allowed fixtures to be created or reconfigured on-demand in a cellular manufacturing environment, according to the scheduling of the customised parts to be processed. The concept required the research and development of such a cell, together with the optimisation modelling and simulation of this cell in an appropriate manufacturing environment. The research included the conceptualisation of a fixture manufacturing cell in a mass customisation production system. A proof-of-concept of the cell was assembled and automated in the laboratory. A three-stage optimisation method was developed to model and optimise the scheduling of the cell in the manufacturing environment. This included clustering of parts to fixtures; optimal scheduling of those parts on those fixtures; and a Mixed Integer Linear Programming (MILP) model to optimally synchronise the fixture manufacturing cell with the part processing cell. A heuristic was developed to solve the MILP problem much faster and for much larger problem sizes – producing good, feasible solutions. These problems were modelled and tested in MATLAB®. The cell was simulated and tested in AnyLogic®. The research topic is beneficial to mass customisation production systems, where the use of reconfigurable modular fixtures in the manufacturing process cannot be optimised with conventional scheduling approaches. The results showed that the model optimally minimised the total idle time of the production schedule; the heuristic also provided good, feasible solutions to those problems. The concept of the on-demand fixture manufacturing cell was found to be capable of facilitating the manufacture of customised products

    Production Scheduling

    Get PDF
    Generally speaking, scheduling is the procedure of mapping a set of tasks or jobs (studied objects) to a set of target resources efficiently. More specifically, as a part of a larger planning and scheduling process, production scheduling is essential for the proper functioning of a manufacturing enterprise. This book presents ten chapters divided into five sections. Section 1 discusses rescheduling strategies, policies, and methods for production scheduling. Section 2 presents two chapters about flow shop scheduling. Section 3 describes heuristic and metaheuristic methods for treating the scheduling problem in an efficient manner. In addition, two test cases are presented in Section 4. The first uses simulation, while the second shows a real implementation of a production scheduling system. Finally, Section 5 presents some modeling strategies for building production scheduling systems. This book will be of interest to those working in the decision-making branches of production, in various operational research areas, as well as computational methods design. People from a diverse background ranging from academia and research to those working in industry, can take advantage of this volume

    Smart Master Production Schedule for the Supply Chain: A Conceptual Framework

    Full text link
    [EN] Risks arising from the effect of disruptions and unsustainable practices constantly push the supply chain to uncompetitive positions. A smart production planning and control process must successfully address both risks by reducing them, thereby strengthening supply chain (SC) resilience and its ability to survive in the long term. On the one hand, the antidisruptive potential and the inherent sustainability implications of the zero-defect manufacturing (ZDM) management model should be highlighted. On the other hand, the digitization and virtualization of processes by Industry 4.0 (I4.0) digital technologies, namely digital twin (DT) technology, enable new simulation and optimization methods, especially in combination with machine learning (ML) procedures. This paper reviews the state of the art and proposes a ZDM strategy-based conceptual framework that models, optimizes and simulates the master production schedule (MPS) problem to maximize service levels in SCs. This conceptual framework will serve as a starting point for developing new MPS optimization models and algorithms in supply chain 4.0 (SC4.0) environments.The research leading to these results received funding from the European Union H2020 Program with grant agreements No. 825631 "Zero-Defect Manufacturing Platform (ZDMP)" and No. 958205 "Industrial Data Services for Quality Control in Smart Manufacturing (i4Q)", and from Grant RTI2018-101344-B-I00 funded by MCIN/AEI/10.13039/501100011033 and by "ERDF A way of making Europe".Serrano-Ruiz, JC.; Mula, J.; Poler, R. (2021). Smart Master Production Schedule for the Supply Chain: A Conceptual Framework. Computers. 10(12):1-24. https://doi.org/10.3390/computers10120156124101

    An investigation of changeover sensitive heuristics in an industrial job shop environment

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    • …
    corecore