50,262 research outputs found

    Overview of Hydra: a concurrent language for synchronous digital circuit design

    Get PDF
    Hydra is a computer hardware description language that integrates several kinds of software tool (simulation, netlist generation and timing analysis) within a single circuit specification. The design language is inherently concurrent, and it offers black box abstraction and general design patterns that simplify the design of circuits with regular structure. Hydra specifications are concise, allowing the complete design of a computer system as a digital circuit within a few pages. This paper discusses the motivations behind Hydra, and illustrates the system with a significant portion of the design of a basic RISC processor

    Digital signal processing: the impact of convergence on education, society and design flow

    Get PDF
    Design and development of real-time, memory and processor hungry digital signal processing systems has for decades been accomplished on general-purpose microprocessors. Increasing needs for high-performance DSP systems made these microprocessors unattractive for such implementations. Various attempts to improve the performance of these systems resulted in the use of dedicated digital signal processing devices like DSP processors and the former heavyweight champion of electronics design – Application Specific Integrated Circuits. The advent of RAM-based Field Programmable Gate Arrays has changed the DSP design flow. Software algorithmic designers can now take their DSP algorithms right from inception to hardware implementation, thanks to the increasing availability of software/hardware design flow or hardware/software co-design. This has led to a demand in the industry for graduates with good skills in both Electrical Engineering and Computer Science. This paper evaluates the impact of technology on DSP-based designs, hardware design languages, and how graduate/undergraduate courses have changed to suit this transition

    Hardware/software codesign methodology for fuzzy controller implementation

    Get PDF
    This paper describes a HW/SW codesign methodology for the implementation of fuzzy controllers on a platform composed by a general-purpose microcontroller and specific processing elements implemented on FPGAs or ASICs. The different phases of the methodology, as well as the CAD tools used in each design stage, are presented, with emphasis on the fuzzy system development environment Xfuzzy. Also included is a practical application of the described methodology for the development of a fuzzy controller for a dosage system

    A High-level EDA Environment for the Automatic Insertion of HD-BIST Structures

    Get PDF
    This paper presents a High-Level EDA environment based on the Hierarchical Distributed BIST (HD-BIST), a flexible and reusable approach to solve BIST scheduling issues in System-on-Chip applications. HD-BIST allows activating and controlling different BISTed blocks at different levels of hierarchy, with a minimum overhead in terms of area and test time. Besides the hardware layer, the authors present the HD-BIST application layer, where a simple modeling language, and a prototypical EDA tool demonstrate the effectiveness of the automation of the HD-BIST insertion in the test strategy definition of a complex System-on-Chip
    • 

    corecore